Bladder cancer is prevalent and features significant recurrence and progression rates, necessitating effective treatment strategies. Gemcitabine, commonly used to treat non-muscle invasive bladder cancer (NMIBC), shows moderate efficacy and notable side effects. TGF-β, not only a key in epithelial-mesenchymal transition(EMT) but also in tumor development, offers a target for enhancing gemcitabine efficacy. The present research was designed to explore the impact of TGF-β1 inhibitors (LY2109761 and LY3200882) with or without gemcitabine on bladder cancer cells and to develop Pluronic F-127-based microspheres (MSs) for drug delivery. TGF-β1 inhibitors significantly reduced cell viability, promoted apoptosis, and inhibited invasion in bladder cancer cell lines 5637 and SW780, with LY3200882 showing superior efficacy. Combining LY3200882 with gemcitabine enhanced these effects, indicating a synergistic interaction. Drug-loaded MSs were prepared, characterized by smooth morphology and consistent size distribution, and demonstrated sustained drug release, sufficient physical integrity, and no significant cytotoxicity to normal human fibroblast cells. In vitro, gemcitabine encapsulated in MSs exhibited enhanced cytotoxicity, apoptosis induction, and invasion inhibition compared to non-encapsulated gemcitabine. In vivo, these MSs significantly reduced tumor weight and volume, with notable reductions in blood vessel and cancer cell density, and altered expression of proliferation and apoptosis markers, particularly in the gemcitabineâ+âLY3200882 MSs group. Systemic and local bladder toxicity assessments in mice demonstrated the in vivo safety of drug-loaded MSs. This study concludes that combining TGF-β1 inhibitors with gemcitabine in Pluronic F-127-based MSs enhances therapeutic efficacy against bladder cancer, promoting apoptosis, inhibiting cell invasion, and reducing tumor growth and metastasis while maintaining safety.
Enhancing the therapeutic efficacy of gemcitabine in bladder cancer through TGF-β1 inhibition and pluronic F-127-based microsphere delivery.
通过抑制 TGF-β1 和基于 Pluronic F-127 的微球递送来增强吉西他滨在膀胱癌中的治疗效果
阅读:6
作者:Xiong Yaoyao, Li Yangle, Chen Lingxiao, Chen Minfeng, He Wei, Qi Lin
| 期刊: | Journal of Biological Engineering | 影响因子: | 6.500 |
| 时间: | 2025 | 起止号: | 2025 Jul 11; 19(1):62 |
| doi: | 10.1186/s13036-025-00535-7 | 研究方向: | 肿瘤 |
| 疾病类型: | 膀胱癌 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
