BACKGROUND: Temozolomide (TMZ) is a first-line chemotherapeutic agent for gliomas. However, its efficacy is limited by drug resistance. Platycodin D (PD) exhibits notable anti-glioma activity The objective of this study was to investigate the potential of PD to augment glioma sensitivity to TMZ and the underlying mechanisms. METHODS: Cell viability and proliferation were assessed using CCK-8 and clonogenic assays, respectively, while flow cytometry was used to detect apoptosis. Cell migration and invasion were assessed using Transwell assays. Western blotting and immunohistochemistry analyses were performed to determine protein expression levels. A xenograft glioma model was established to investigate the in vivo effects of PD. RESULTS: PD augmented glioma cell sensitivity to TMZ, as evidenced by heightened inhibition of cell growth, colony formation, migration, and invasion, accompanied by elevated apoptosis. Treatment with PD or a combination of PD and TMZ robustly suppressed the expression of active β-catenin and c-Myc, which was reversed by the β-catenin activator, SKL2001. In vivo experiments demonstrated that PD amplified the anti-glioma efficacy of TMZ, resulting in diminished Ki67 expression and substantially reduced expression of active β-catenin and c-Myc in the tumor tissue. CONCLUSION: PD augmented glioma cell sensitivity to TMZ by modulating Wnt/β-catenin pathway. Our findings demonstrate the potential of PD as an innovative therapeutic agent to enhance glioma treatment, especially in TMZ-resistant gliomas.
Platycodin D Enhances Glioma Sensitivity to Temozolomide by Inhibition of the Wnt/β-Catenin Pathway.
桔梗皂苷D通过抑制Wnt/β-catenin通路增强胶质瘤对替莫唑胺的敏感性
阅读:6
作者:Li Haima, Ouyang Jia, Wang Xuelian, Qian Chao
| 期刊: | Drug Design Development and Therapy | 影响因子: | 5.100 |
| 时间: | 2025 | 起止号: | 2025 Mar 11; 19:1811-1824 |
| doi: | 10.2147/DDDT.S503167 | 研究方向: | 肿瘤 |
| 疾病类型: | 胶质瘤 | 信号通路: | Wnt/β-Catenin |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
