Targeting Txnip-mediated metabolic reprogramming has therapeutic potential for osteoarthritis.

靶向 Txnip 介导的代谢重编程具有治疗骨关节炎的潜力

阅读:5
作者:Cao Xiankun, Yang Xiao, Zhang Pu, Xu Jianguang, Zhao Jie, Yang Erzhu
Osteoarthritis (OA) inflammatory microenvironment triggered glucose metabolism and mitochondrial dysfunction in chondrocytes, leading to a shift of metabolic tendency between oxidative phosphorylation and anaerobic glycolysis. Thioredoxin-interacting protein (Txnip) increased production of reactive oxygen species (ROS), which exacerbates oxidative stress, inflammation and further accelerates cartilage degeneration and extracellular matrix (ECM) degradation. Txnip expression is also positively correlated with several critical pathological glucose and lipid metabolism processes beyond inflammation and endoplasmic reticulum stress (ERS). While the role of Txnip-mediated chondrocyte metabolic reprogramming in OA has not been explored. This study focuses on the unexplored role of Txnip-mediated chondrocyte metabolic reprogramming in chondrogenesis and ECM deposition. The study reveals that upregulated glycolysis after Txnip knockdown significantly contributes to mouse chondrogenesis and ECM deposition. Moreover, verapamil, a clinically used drug that targets Txnip, shows potential for treating mouse OA. These findings suggest that targeting Txnip-mediated metabolic reprogramming could offer a novel therapeutic strategy for OA treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。