Memprin/A5/mu (MAM) domain containing glycosylphosphatidylinositol anchor 2 (MDGA2) is an excitatory synaptic suppressor and its mutations have been associated with autism spectrum disorder (ASD). However, the detailed physiological function of MDGA2 and the mechanism underlying MDGA2 deficiency-caused ASD has yet to be elucidated. Herein, we not only confirm that Mdga2â+/- mice exhibit increased excitatory synapse transmission and ASD-like behaviors, but also identify aberrant brain-derived neurotrophic factor/tyrosine kinase B (BDNF/TrkB) signaling activation in these mice. We demonstrate that MDGA2 interacts with TrkB through its memprin/A5/mu domain, thereby competing the binding of BDNF to TrkB. Both loss of MDGA2 and the ASD-associated MDGA2 V930I mutation promote the BDNF/TrkB signaling activity. Importantly, we demonstrate that inhibiting the BDNF/TrkB signaling by both small molecular compound and MDGA2-derived peptide can attenuate the increase of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor-mediated excitatory synaptic activity and social deficits in MDGA2-deficient mice. These results highlight a novel MDGA2-BDNF/TrkB-dependent mechanism underlying the synaptic function regulation, which may become a therapeutic target for ASD.
Mdga2 deficiency leads to an aberrant activation of BDNF/TrkB signaling that underlies autism-relevant synaptic and behavioral changes in mice.
Mdga2 缺陷导致 BDNF/TrkB 信号异常激活,这是小鼠自闭症相关突触和行为改变的基础
阅读:6
作者:Zhao Dongdong, Huo Yuanhui, Zheng Naizhen, Zhu Xiang, Yang Dingting, Zhou Yunqiang, Wang Shengya, Jiang Yiru, Wu Yili, Zhang Yun-Wu
| 期刊: | PLoS Biology | 影响因子: | 7.200 |
| 时间: | 2025 | 起止号: | 2025 Apr 1; 23(4):e3003047 |
| doi: | 10.1371/journal.pbio.3003047 | 研究方向: | 信号转导 |
| 疾病类型: | 自闭症 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
