Microbial diversity in active and abandoned desert kangaroo rat burrows and from proximal surface sand.

活跃和废弃的沙漠袋鼠鼠洞穴以及附近地表沙中的微生物多样性

阅读:5
作者:Aydin Duygu, Parks Janice M, Tirkes Sera, Collins Clint E, Akin Idil Deniz, Friesen Maren L, Call Douglas R, Beyenal Haluk
Desert kangaroo rats (Dipodomys deserti) construct burrows that can create micro-niches favorable to increased microbial activity. The aim of this study was to characterize the bacterial communities found in kangaroo rat burrows, in proximal desert surface sand, and in samples from kangaroo rats. We collected samples from burrow ceilings of actively inhabited burrows, from burrows that were no longer in use, and from the proximal surface sand in the Sonoran Desert, Yuma, AZ. Following DNA extraction from samples, 16S rRNA gene sequencing was performed, and functional predictions were made and assessed for each characterized bacterial community. Active burrow samples exhibited greater alpha diversity but similar beta diversity when compared to surface sand (P < 0.05), with no significant differences observed between abandoned and active burrows. Bacterial genera and genes related to nitrogen fixation, nitrification, and urea hydrolysis were found in significantly higher abundance in active burrows compared to the surface sand (P < 0.05). The core microbiome of active burrow samples was different from surface sand, including higher abundances of Acidimicrobiales and Acidobacteria subdivision Gp7. Active burrow samples included 30 unique genera. Kangaroo rat anal swabs shared 12, cheek pouches shared 6 unique genera with burrows. These findings suggest that kangaroo rats can shape the microbial composition of their burrow environment through the introduction of food material and waste, facilitating increased species richness and bacterial diversity.IMPORTANCEAnimals can alter soil parameters, including microbial composition through burrowing activities, excretion, and dietary composition. Desert kangaroo rats (Dipodomys deserti) construct burrows within loose desert sand that have microclimatic conditions different from the surrounding desert climate. In this study, we explored the effect of disturbance from kangaroo rat activities on the bacterial composition of sand. We compared the bacterial community compositions of kangaroo rat (D. deserti) samples, their burrows, and the proximal surface sand. The results showed that burrow sand shows higher richness and diversity of bacterial community with higher abundances of bacterial genera and genes associated with nitrogen fixation, nitrification, and urea hydrolysis compared to the surface sand. These findings suggest that kangaroo rats affect the microbial composition of their burrow environment through the introduction of food material and waste.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。