Long-Term Exercise Mitigates Energy Expenditure and Inflammatory Responses Induced by Sleep Deprivation in Mice.

长期运动可减轻小鼠睡眠剥夺引起的能量消耗和炎症反应

阅读:5
作者:Zheng Tian-Shu, Gao Xin-Ran, Gu Chen, Ru Yu-Ning, Xu Rui-Ping, Yang Yu-Hang, Wang De-Hua
Background: Sleep deprivation (SD), defined as the disruption or loss of normal sleep, negatively affects energy metabolism, immune function, and gut microbiota in both humans and animals. Although SD has detrimental effects, it is often unavoidable due to work or study demands. Exercise has been shown to improve sleep quality, regulate metabolism, and enhance immune function. However, whether exercise can mitigate the adverse effects of unavoidable SD remains unclear. Methods: To explore the protective effects of exercise against SD-induced gut microbiota and metabolic dysfunction, mice were randomly assigned to four groups: control (CTR), exercise (EXE), SD, and exercise + SD (EXE + SD). Inflammatory markers and gut microbiota composition were analyzed to assess the impacts of SD and exercise interventions. Results: The inflammatory levels and energy metabolism in SD mice were significantly increased compared to those in CTR mice. Compared with SD mice, EXE + SD mice had a more stable gut microbiota structure and higher butyrate levels. Meanwhile, the inflammatory response caused by SD was also inhibited by exercise preconditioning. Both lipopolysaccharide inhibitors injection and butyrate supplementation can partially alleviate the elevation of inflammatory response and energy metabolism caused by SD. Conclusion: The inflammation and energy metabolism disorders in mice caused by SD can be inhibited by exercise preconditioning through stabilizing the structure of gut microbiota. This protective effect is highly likely related to the increase in butyric acid levels caused by exercise.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。