Two-photon absorbing nanocrystal sensors for ratiometric detection of oxygen

双光子吸收纳米晶体传感器用于氧气比率检测

阅读:9
作者:Emily J McLaurin, Andrew B Greytak, Moungi G Bawendi, Daniel G Nocera

Abstract

Two nanocrystal-osmium(II) polypyridyl (NC-Os(II)PP) conjugates have been designed to detect oxygen in biological environments. Polypyridines appended with a single free amine were linked with facility to a carboxylic acid functionality of a semiconductor NC overlayer to afford a biologically stable amide bond. The Os(II)PP complexes possess broad absorptions that extend into the red spectral region; this absorption feature makes them desirable acceptors of energy from NC donors. Fluorescence resonance energy transfer (FRET) from the NC to the Os(II)PP causes an enhanced Os(II)PP emission with a concomitant quenching of the NC emission. Owing to the large two-photon absorption cross-section of the NCs, FRET from the NC to the Os(II)PP can be established under two-photon excitation conditions. In this way, two-photon processes of metal polypyridyl complexes can be exploited for sensing. The emission of the NC is insensitive to oxygen, even at 1 atm, whereas excited states of both osmium complexes are quenched in the presence of oxygen. The NC emission may thus be used as an internal reference to correct for fluctuations in the photoluminescence intensity signal. These properties taken together establish NC-Os(II)PP conjugates as competent ratiometric, two-photon oxygen sensors for application in biological microenvironments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。