Bone regeneration is a complex and coordinated physiological process, and the different stages of this process have corresponding microenvironments to support cell development and physiological activities. However, biological scaffolds that provide different three-dimensional environments during different stages of bone regeneration are lacking. In this study, we report a novel composite scaffold (NPE@DCBM) inspired by the stages of bone regeneration; this scaffold was composed of a fibrin hydrogel loaded with nanoplatelet vesicles (NPVs), designated as NPE, and decellularized cancellous bone matrix (DCBM) microparticles. Initially, the NPE rapidly established a temporary microenvironment conducive to cell migration and angiogenesis. Subsequently, the DCBM simulated the molecular structure of bone and promoted new bone formation. In vitro, the NPVs regulated lipid metabolism in bone marrow mesenchymal stem cells (BMSCs), reprogramed the fate of BMSCs by activating the PI3K/AKT and MAPK/ERK positive feedback pathways, and increased BMSC functions, including proliferation, migration and proangiogenic potential. In vivo, NPV@DCBM accelerated bone tissue regeneration and repair. Initially, the NPE rapidly induced angiogenesis between DCBM microparticles, and subsequently, BMSCs differentiated into osteoblasts with DCBM microparticles at their core. In summary, the design of this composite scaffold that sequentially mimics different bone regeneration microenvironments may provide a promising strategy for bone regeneration, with clinical translational potential.
Sequential simulation of regeneration-specific microenvironments using scaffolds loaded with nanoplatelet vesicles enhances bone regeneration.
利用载有纳米片囊泡的支架对再生特异性微环境进行顺序模拟,可增强骨再生
阅读:4
作者:Li Wenshuai, Shen Qichen, Tong Tong, Tian Hongsen, Lian Xiaowei, Wang Haoli, Yang Ke, Dai Zhanqiu, Li Yijun, Chen Xianhua, Wang Qingqing, Yang Dan, Wang Feng, Hao Feng, Wang Linfeng
| 期刊: | Bioactive Materials | 影响因子: | 20.300 |
| 时间: | 2025 | 起止号: | 2025 Apr 26; 50:475-493 |
| doi: | 10.1016/j.bioactmat.2025.04.018 | 研究方向: | 骨科研究 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
