Mitochondrial DNA damage in calf skeletal muscle and walking performance in people with peripheral artery disease.

外周动脉疾病患者小腿骨骼肌线粒体DNA损伤与步行能力的关系

阅读:6
作者:Saini Sunil K, McDermott Mary M, Picca Anna, Li Lingyu, Wohlgemuth Stephanie E, Kosmac Kate, Peterson Charlotte A, Tian Lu, Ferrucci Luigi, Guralnik Jack M, Sufit Robert L, Leeuwenburgh Christiaan
BACKGROUND: Peripheral artery disease (PAD) is associated with mitochondrial dysfunction in calf skeletal muscle and a greater abundance of mitochondrial DNA (mtDNA) heteroplasmy. However, it is unknown whether calf skeletal muscle mtDNA of PAD participants harbors a greater abundance of mitochondrial DNA 4977-bp common deletion (mtDNA(4977)), strand breaks and oxidative damage (i.e., oxidized purines) compared to non-PAD participants and whether these mtDNA abnormalities are associated with poor walking performance in participants with PAD. METHODS: Calf muscle biopsies were obtained from 50 PAD participants (ankle-brachial index (ABI) < 0.95) and 25 non-PAD participants (ABI = 0.99-1.40) matched by age, sex, and race. The abundance of mtDNA copy number, mtDNA(4977) deletion, strand breaks, and oxidized purines in selected mtDNA regions coding for electron transport chain (ETC) constituents and the non-coding D-Loop region was determined in calf muscle. All participants completed measurement of 6-min walk and usual and fast-paced 4-m walking velocity test. RESULTS: Participants with PAD (mean age = 65.4 years, SD = 6.9; 14 (28%) women, 38 (76%) black) and without PAD (mean age = 65.2 years, SD = 6.7; 7 (28%) women, 16 (64%) black) did not differ in the abundance of calf muscle mtDNA(4977) deletion, mtDNA strand breaks, and oxidized purines. Though, a greater abundance of mtDNA strand breaks within ND4/5 genes was significantly associated with poorer 6-min walk distance, lower usual-paced 4-m walking velocity, and lower fast-paced 4-m walking velocity in non-PAD participants. Significant associations were also found in the density of strand break damage (i.e., damage per mtDNA copy) within ND1/2, ND4/5 and COII/ATPase 6/8 region with 6-min walk distance, usual-paced 4-m walking velocity and fast-paced 4-m walking velocity in non-PAD participants. Significant interactions were found between PAD presence vs. absence and density of strand break damage within ND1/2, ND4/5, COII/ATPase 6/8 regions for the associations with 6-min walk distance, usual-paced 4-m walking velocity, fast-paced 4-m walking velocity. Conversely, of the three walking performance measures only the usual-paced 4-m walking velocity showed a significant, although modest, negative association with the abundance of oxidized purines in the D-Loop (P = 0.031) and ND4/5 (P = 0.033) regions in the calf skeletal muscle of people with PAD. CONCLUSION: Overall, these data suggest that the abundance of calf muscle mtDNA strand breaks and mtDNA(4977) common deletion are not associated with walking performance in people with PAD and may not be directly involved in the pathophysiology of PAD. Conversely, strand breaks in specific mtDNA regions may contribute to poor walking performance in people without PAD. Further study is needed to confirm whether usual-paced 4-m walking velocity is associated significantly with a greater abundance of oxidized purines in the D-loop, a "mutational hotspot" for oxidative damage, and why this association may differ from the association with 6-min walk distance and fast-paced 4-m walking velocity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。