BACKGROUND: Inflammation and immune factors are the core of intervertebral disc degeneration (IDD), but the immune environment and epigenetic regulation process of IDD remain unclear. This study aims to identify immune-related diagnostic candidate genes for IDD, and search for potential pathogenesis and therapeutic targets for IDD. METHODS: Gene expression datasets were obtained from the Gene Expression Omnibus (GEO). Differential expression immune genes (Imm-DEGs) were identified through weighted gene correlation network analysis (WGCNA) and linear models for microarray data analysis (Limma). LASSO algorithm was used to identify feature genes related to IDD, which were compared with core node genes in PPI network to obtain hub genes. Based on the coefficients of hub genes, a risk model was constructed, and the diagnostic value of hub genes was further evaluated through receiver operating characteristic (ROC) analysis. Xcell, an immunocyte analysis tool, was used to estimate the infiltration of immune cells. Finally, nucleus pulposus cells were co-cultured with macrophages to create an M1 macrophage immune inflammatory environment, and the changes of hub genes were verified. RESULTS: Combined with the results of WGCNA and Limma gene differential analysis, a total of 30 Imm-DEGs were identified. Imm-DEGs enriched in multiple pathways related to immunity and inflammation. LASSO algorithm identified 10 feature genes from Imm-DEGs that significantly affected IDD, and after comparison with core node genes in the PPI network of Imm-DEGs, 6 hub genes (NR1H3, SORT1, PTGDS, AGT, IRF1, TGFB2) were determined. Results of ROC curves and external dataset validation showed that the risk model constructed with the 6 hub genes had high diagnostic value for IDD. Immunocyte infiltration analysis showed the presence of various dysregulated immune cells in the degenerative nucleus pulposus tissue. In vitro experimental results showed that the gene expression of NR1H3, SORT1, PTGDS, IRF1, and TGFB2 in nucleus pulposus cells in the immune inflammatory environment was up-regulated, but the change of AGT was not significant. CONCLUSIONS: The hub genes NR1H3, SORT1, PTGDS, IRF1, and TGFB2 can be used as immunorelated biomarkers for IDD, and may be potential targets for immune regulation therapy for IDD.
Identification and experimental verification of immune-related hub genes in intervertebral disc degeneration.
椎间盘退变中免疫相关枢纽基因的鉴定和实验验证
阅读:6
作者:Huang Zeling, Cai Xuefeng, Shen Xiaofeng, Chen Zixuan, Zhang Qingtian, Liu Yujiang, Lu Binjie, Xu Bo, Li Yuwei
| 期刊: | Heliyon | 影响因子: | 3.600 |
| 时间: | 2024 | 起止号: | 2024 Jul 11; 10(14):e34530 |
| doi: | 10.1016/j.heliyon.2024.e34530 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
