Ferroptosis is one of the most critical biological consequences of glutathione depletion. Excessive oxidative stress, indicated by an elevated oxidized glutathione (GSSG)/reduced glutathione (GSH) ratio, is recognized as a key driver of ferroptosis. However, in glutathione depletion-induced ferroptosis, a marked decrease in total glutathione levels (including both GSH and GSSG) is frequently observed, yet its significance remains understudied. Protein S-glutathionylation (protein-SSG) levels are closely linked to the redox state and cellular glutathione pools including GSH and GSSG. To date, the role of protein-SSG during cell ferroptosis induced by glutathione depletion remains poorly understood. Here, we demonstrated that upregulation of CHAC1, a glutathione-degrading enzyme, acted as a key regulator of protein-SSG formation and exacerbated glutathione depletion-induced ferroptosis. This effect was observed in both in vitro and in vivo models, including erastin-induced ferroptosis across multiple cell lines and acetaminophen overdose-triggered ferroptosis in hepatocytes. Deficiency of CHAC1 resulted in increased glutathione pools, enhanced protein-SSG, improved liver function, and attenuation of hepatocyte ferroptosis upon acetaminophen challenge. These protective effects were reversed by CHAC1 overexpression. Using quantitative redox proteomics, we identified glutathione pool-sensitive S-glutathionylated proteins. As an important example, we discovered that ADP-ribosylation factor 6 (ARF6) was regulated by S-glutathionylation during glutathione depletion-induced ferroptosis. Our findings revealed that CHAC1 upregulation reduced the S-glutathionylation of ARF6, resulting in decreased ARF6 levels in lysosomes. This, in turn, enhanced the localization of the transferrin receptor (TFRC) on the cell membrane and increased transferrin uptake, ultimately compromising the protective role of ARF6 in ferroptosis induced by glutathione depletion. Targeting TFRC using GalNAc-siTfrc mitigated acetaminophen-induced liver injury in vivo. In conclusion, our study provide evidence that availability of glutathione pools affects protein S-glutathionylation and regulates protein functions to influence the process of ferroptosis, which opens an avenue to understanding the cell ferroptosis induced by glutathione depletion.
Protein S-glutathionylation confers cellular resistance to ferroptosis induced by glutathione depletion.
蛋白质 S-谷胱甘肽化赋予细胞抵抗谷胱甘肽耗竭引起的铁死亡的能力
阅读:6
作者:Ju Yi, Zhang Yuting, Tian Xiaolin, Zhu Nanbin, Zheng Yufan, Qiao Yiming, Yang Tao, Niu Baolin, Li Xiaoyun, Yu Liu, Liu Zhuolin, Wu Yixuan, Zhi Yang, Dong Yinuo, Xu Qingling, Yang Xiaoming, Wang Xuening, Wang Xiaokai, Deng Haiteng, Mao Yimin, Li Xiaobo
| 期刊: | Redox Biology | 影响因子: | 11.900 |
| 时间: | 2025 | 起止号: | 2025 Jun;83:103660 |
| doi: | 10.1016/j.redox.2025.103660 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
