BACKGROUND: The composition of the intestinal flora and the resulting metabolites affect patients' sleep after surgery. METHODS: We intended to elucidate the mechanisms by which disordered intestinal flora modulate the pathophysiology of postoperative sleep disturbances in hosts. In this study, we explored the impacts of anesthesia, surgery, and postoperative sleep duration on the fecal microbiota and metabolites of individuals classified postprocedurally as poor sleepers (PS) and good sleepers (GS), as diagnosed by the bispectral index. We also performed fecal microbiota transplantation in pseudo-germ-free (PGF) rats and applied Western blotting, immunohistochemistry, and gut permeability analyses to identify the potential mechanism of its effect. RESULTS: Research finding shows the PS group had significantly higher postoperative stool levels of the metabolites tryptophan and kynurenine than the GS group. PGF rats that received gut microbiota from PSs exhibited less rapid eye movement (REM) sleep than those that received GS microbiota (GS-PGF: 11.4%â±â1.6%, PS-PGF: 4.8%â±â2.0%, pâ<â0.001). Measurement of 5-hydroxytryptophan (5-HTP) levels in the stool, serum, and prefrontal cortex (PFC) indicated that altered 5-HTP levels, including reduced levels in the PFC, caused sleep loss in PGF rats transplanted with PS gut flora. Through the brain-gut axis, the inactivity of tryptophan hydroxylase 1 (TPH1) and TPH2 in the colon and PFC, respectively, caused a loss of REM sleep in PGF rats and decreased the 5-HTP level in the PFC. CONCLUSIONS: These findings indicate that postoperative gut dysbiosis and defective 5-HTP metabolism may cause postoperative sleep disturbances. Clinicians and sleep researchers may gain new insights from this study.
Alterations in gut microbiota and metabolites contribute to postoperative sleep disturbances.
肠道菌群和代谢产物的改变会导致术后睡眠障碍
阅读:7
作者:Zhong Hui, Jiang Meiru, Yuan Kun, Sheng Fang, Xu Xiuyun, Cui Yong, Sun Xijia, Tan Wenfei
| 期刊: | Animal Models and Experimental Medicine | 影响因子: | 3.400 |
| 时间: | 2025 | 起止号: | 2025 Jun;8(6):977-989 |
| doi: | 10.1002/ame2.12557 | 研究方向: | 代谢 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
