Exogenous hydrogen sulfide protects against high glucose-induced apoptosis and oxidative stress by inhibiting the STAT3/HIF-1α pathway in H9c2 cardiomyocytes.

外源性硫化氢通过抑制 H9c2 心肌细胞中的 STAT3/HIF-1α 通路来抵抗高葡萄糖诱导的细胞凋亡和氧化应激

阅读:7
作者:Li Jing, Yuan Yi-Qiang, Zhang Li, Zhang Hua, Zhang Shen-Wei, Zhang Yu, Xuan Xue-Xi, Wang Ming-Jie, Zhang Jin-Ying
Hydrogen sulfide (H(2)S), an endogenous gasotransmitter, possesses multiple physiological and pharmacological properties including anti-apoptotic, anti-oxidative stress and cardiac protective activities in diabetic cardiomyopathy. An increasing body of evidence has suggested that signal transducer and activator of transcription 3 (STAT3) has beneficial effects in the heart. However, the effect of diabetes on the phosphorylation or activation of cardiac STAT3 appears to be controversial. The present study was designed to investigate the precise function of the STAT3/hypoxia-inducible factor-1α (HIF-1α) signaling pathway in high glucose (HG)-induced H9c2 cardiomyocyte injury and the function of the STAT3/HIF-1α pathway in the cardioprotective action of H(2)S. The results revealed that GYY4137 pretreatment substantially ameliorated the HG-induced decrease in cell viability and the increase in lactate dehydrogenase (LDH) release in H9c2 cells. Additionally, HG treatment resulted in the upregulation of the phosphorylated (p)-STAT3/STAT3 ratio and HIF-1α protein expression in H9c2 cells, indicating that the activation of the STAT3/HIF-1α pathway was induced by HG. STAT3/HIF-1α pathway inhibition induced by transfection with STAT3 small interfering (si)-RNA attenuated the HG-induced downregulation of cell viability and the upregulation of LDH release. Furthermore, STAT3 siRNA transfection and GYY4137 pretreatment combined attenuated HG-induced apoptosis as illustrated by the decrease in the number of terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells, caspase-3 activity, apoptosis ratio and BCL2 associated X, apoptosis regulator/BCL2 apoptosis regulator ratio in H9c2 cells. In addition, STAT3 siRNA transfection and GYY4137 blocked HG-induced oxidative stress as evidenced by the decrease in reactive oxygen species generation, malondialdehyde content and NADPH oxidase 2 expression, and the increase in superoxide dismutase activity and glutathione level. Notably, GYY4137 pretreatment was revealed to reduce the p-STAT3/STAT3 ratio and HIF-1α protein expression, resulting in the inhibition of the STAT3/HIF-1α signaling pathway in HG-treated H9c2 cells. Altogether, the present results demonstrated that H(2)S mitigates HG-induced H9c2 cell damage, and reduces apoptosis and oxidative stress by suppressing the STAT3/HIF-1α signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。