The evolution of multicellular organisms involves the emergence of cellular collectives that eventually become units of selection in their own right. The process can be facilitated by ecological conditions that impose heritable variance in fitness on nascent collectives, with long-term persistence depending on the capacity of competing lineages to transition reliably between soma- and germ-like stages of proto-life cycles. Prior work with experimental bacterial populations showed rapid increases in collective-level fitness, with the capacity to switch between life cycle phases being a particular focus of selection. Here, we report experiments in which the most successful lineage from the earlier study was further propagated for 10 life cycle generations under regimes that required different investments in the soma-like phase. To explore the adaptive significance of switching, a control was included in which reliable transitioning between life cycle phases was abolished. The switch proved central to the maintenance of fitness. Moreover, in a non-switch treatment, where solutions to producing a robust and enduring soma-phase were required, the evolution of mutL-dependent switching emerged de novo. A newly developed computational pipeline (colgen) was used to display the moment-by-moment evolutionary dynamics of lineages, providing rare visual evidence of the roles of chance, history and selection. Colgen, underpinned by a Bayesian model, was further used to propagate hundreds of mutations back through temporal genealogical series, predict lineages and time points corresponding to changes of likely adaptive significance, and in one instance, via a combination of targeted sequencing, genetics and analyses of fitness consequences, the adaptive significance of a single mutation was demonstrated. Overall, our results shed light on the mechanisms by which collectives adapt to new selective challenges and demonstrate the value of genealogy-centred approaches for investigating the dynamics of lineage-level selection.
Evolutionary dynamics of nascent multicellular lineages.
新生多细胞谱系的演化动力学
阅读:15
作者:Doulcier Guilhem, Remigi Philippe, Rexin Daniel, Rainey Paul B
| 期刊: | Proceedings of the Royal Society B-Biological Sciences | 影响因子: | 3.500 |
| 时间: | 2025 | 起止号: | 2025 Apr;292(2045):20241195 |
| doi: | 10.1098/rspb.2024.1195 | 研究方向: | 细胞生物学 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
