The use of sialic acids as attachment factors is a common feature of Enterovirus-D species.

利用唾液酸作为附着因子是肠道病毒D型物种的常见特征

阅读:6
作者:Filhol Typhaine, Mac Kain Alice, Joffret Marie-Line, Jouvenet Nolwenn, Caval Vincent, Bessaud Maël
Among the hundreds of enteroviruses (EVs) infecting humans, the members of the species EV-D (Enterovirus deconjuncti) display original traits. First, only five serotypes are known within this species, while other EV species have tens of serotypes each. Second, EV-Ds display a wide variety of tropisms: EV-D68s are respiratory viruses, EV-D70s have an ocular tropism, while EV-D94s, EV-D111s, and EV-D120s seem to be enteric viruses. Besides, while EV-D68s, EV-D70s, and EV-D94s have been detected in humans, EV-D120s were found exclusively in non-human primates, and the last virus type, EV-D111, was found in both. This and other observations have led to the hypothesis that EV-Ds could have a zoonotic origin. Previous studies have shown that EV-D68, EV-D70, and EV-D94 use sialic acids (Sias) as cellular attachment factors. We investigated the role of Sias in EV-D111 infection using sialidase treatments and loss-of-function experiments in human and simian cells. Assessing viral RNA yield by RT-qPCR analyses and infectious viral particle production by titration assays showed that the absence of Sias at the cell surface significantly slowed down EV-D111 infection kinetics without abolishing it. This suggests that Sia acts as an attachment factor. While EVs generally do not use Sias, EV-Ds seem to rely on them for optimal replication in cultured cells. Sia usage may therefore be an ancestral trait of this species. We also studied EV-B114, a simian enterovirus, and found that it does not use Sias. Our work provides new insight regarding an enterovirus that circulates in humans and exhibits unusual ecological traits.IMPORTANCEExcept for a few epidemics in the 1970s and 1980s, the impact of EV-Ds on human health remained modest until the 2010s. In 2014, EV-D68 was occasionally responsible for severe respiratory distress and fatal cases of muscular paralysis. EV-Ds have thus the ability to become pathogenic in humans, hence the importance of studying them. The recently discovered EV-D111, of which only a few isolates are available, has been detected in both human and simian samples, suggesting a potential zoonotic origin. We characterized the early steps of EV-D111 replication, with a focus on its ability to use Sias as attachment factors. We found that EV-D111, like other members of the EV-D species, but unlike most EVs, relies on Sia for optimal replication. Our work provides a better understanding of EV-D111 biology, which is essential to determine its tropism and its potential to emerge in humans.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。