Tetrahydropalmatine improves mitochondrial function in vascular smooth muscle cells of atherosclerosis in vitro by inhibiting Ras homolog gene family A/Rho-associated protein kinase-1 signaling pathway.

四氢巴马汀通过抑制 Ras 同源基因家族 A/Rho 相关蛋白激酶-1 信号通路,改善体外动脉粥样硬化血管平滑肌细胞的线粒体功能

阅读:17
作者:Ding Ke, Bao Qiying, He Jiaqi, Wang Jiahong, Wang Hui
BACKGROUND: Tetrahydropalmatine (THP) regulates mitochondrial function in vascular smooth muscle cells (VSMCs) to prevent or alleviate atherosclerosis (AS), with unclear specific mechanism. METHODS: AS models were constructed by oxidized low-density lipoprotein (ox-LDL)-treated VSMCs. Cell counting kit-8 for cell viability, wound scratch assay for cell migration, and flow cytometry for cell cycle, intracellular reactive oxygen species, and mitochondrial membrane potential (MMP) were performed. Malondialdehyde (MDA) and superoxide dismutase (SOD) levels by biochemical kits, oxygen consumption rate (OCR) by seahorse apparatus, apoptosis by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay (TUNEL) staining, and apoptosis-related expression by western blot were detected. Ras homolog gene family A/Rho-associated protein kinase-1 (RhoA/ROCK1) levels were measured by western blot and ELISA. The RhoA agonist, U46619, was employed to validate mechanism of THP. RESULTS: THP suppressed cell cycle progression and cell migration whereas alleviating cell viability and oxidative stress, as reduced MDA and enhanced SOD levels in ox-LDL-incubated VSMCs. THP protected mitochondrial function by higher MMP levels and OCR values. Additionally, THP decreased TUNEL-positive cells, Bax, Caspase-3, RhoA, ROCK1, and osteopontin expression, while increased Bcl-2 and smooth muscle myosin heavy chain levels. Furthermore, U46619 intervention antagonized effects of THP. CONCLUSION: THP improved mitochondrial function in VSMCs of AS by inhibiting RhoA/ROCK1 signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。