Fibrillin 1 gene (Fbn1) mutations cause Marfan syndrome (MFS), triggering life-threatening aortic complications and multi-organ effects. MFS is increasingly linked to neurovascular complications, amplified by aortic surgery risks. However, the impact of MFS on the brain remains unclear, including the roles of sex, aging, and their contribution to cerebral injury. This study examines brain alterations and their role in cerebral ischemic injury in an MFS mouse model. RNA-seq analysis of young (3-month-old) and aged (13-month-old) male and female wild-type and MFS (Fbn1(C1041G/+)) mice revealed disruptions in TGF-β and extracellular matrix (ECM) pathways in MFS brains, most pronounced in young males and aged females with reduced estrogen levels. Inflammatory pathways were upregulated across all MFS mice. Consequently, changes in TGF-β signaling, ECM turnover, redox stress and inflammatory pathways were assessed through RT-qPCR, immunostaining, Western blot, lucigenin chemiluminescence, spectrophotometry, HPLC, and synchrotron radiation-based microspectroscopy, while cerebrovascular properties were assessed by pressure myography and confocal microscopy in the basilar artery. Aged MFS mice showed decreased brain TGF-β1 levels, while dysregulated collagen turnover was only observed in female MFS mice. Despite increased NADPH oxidase activity and redox damage in the corpus callosum of male MFS mice, brain redox stress levels remain largely unchanged. Young female MFS mice exhibited hypertrophic remodeling of the basilar artery. Remarkably, neuroinflammation driven by reactive gliosis increased in MFS mice, regardless of sex and age. To determine the impact on ischemic vulnerability, young mice underwent bilateral common carotid artery occlusion (5 min)/reperfusion (3 days). MFS mice showed greater post-ischemic brain damage, evidenced by worsened behavioral impairments, hippocampal neurodegeneration, and neuroinflammation. This study identifies sex- and age-dependent disruptions in TGF-β1, ECM, and cerebrovascular integrity in MFS mice. Persistent neuroinflammation and increased vulnerability to post-ischemic brain injury suggests that MFS patients, alongside well-documented aortic complications, have an intrinsic predisposition to cerebral damage.
Sex- and age-dependent neurovascular abnormalities linked to neuroinflammation lead to exacerbated post-ischemic brain injury in Marfan syndrome mice.
与神经炎症相关的性别和年龄依赖性神经血管异常会导致马凡氏综合征小鼠缺血后脑损伤加剧
阅读:5
作者:Manich Gemma, Pérez Belén, Penas Clara, Dantas Ana Paula, Coutinho Joana, Sánchez-Bernadó Paula, GarcÃa-Aranda Julián, Fraile-Ramos Juan, Benseny-Cases Núria, MartÃn-Mur Beatriz, Esteve-Codina Anna, RodrÃguez-Rovira Isaac, Giménez-Llort Lydia, Egea Gustavo, Jiménez-Altayó Francesc
| 期刊: | Redox Biology | 影响因子: | 11.900 |
| 时间: | 2025 | 起止号: | 2025 Jun;83:103662 |
| doi: | 10.1016/j.redox.2025.103662 | 研究方向: | 神经科学 |
| 疾病类型: | 神经炎症 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
