As the primary active component of Astragalus membranaceus, Astragaloside IV (AS-IV) is widely recognized in pharmacological research for its multifaceted therapeutic potential, particularly its antioxidative, immunostimulatory, and cardioprotective properties. Oxidative stress is an important mechanism in the induction of many diseases. The present study investigates the antioxidative mechanism of Astragaloside IV in zebrafish, using menaquinone exposure to induce oxidative stress conditions. The findings revealed that AS-IV effectively attenuated oxidative stress-induced mortality and morphological abnormalities in zebrafish. AS-IV exhibited a concentration-dependent protective effect against developmental abnormalities, with progressive reduction in pericardial effusion, body curvature, and growth retardation observed at higher doses. Moreover, AS-IV treatment not only effectively reduced reactive oxygen species (ROS) accumulation and attenuated oxidative DNA damage but also significantly decreased apoptosis in the cardiac region of zebrafish embryos under oxidative stress conditions. Western blot analysis revealed that AS-IV treatment significantly reduced the protein levels of both Cleaved Caspase-3 and γ-H2AX, indicating its ability to inhibit DNA damage-induced apoptosis. AS-IV mediates its antioxidant defense mechanisms through the activation of the nuclear factor erythroid 2-related factor 2 (NRF2) signaling pathway, inducing the significant upregulation of cytoprotective enzymes. This molecular mechanism underlies the observed phenotypic improvements in oxidative stress-related damage. Upstream analysis demonstrated that AS-IV activates NRF2 primarily through protein kinase B (AKT/PKB) pathway modulation, independent of KEAP1 regulation. Comprehensive mechanistic analysis reveals that Astragaloside IV mitigates oxidative stress-induced apoptosis in zebrafish through coordinated regulation of the AKT/NRF2/HO-1/Caspase-3 signaling axis.
AS-IV Attenuates Oxidative Stress-Induced Apoptosis in Zebrafish via Modulation of the AKT/NRF2/HO-1/Caspase-3 Signaling Axis.
AS-IV 通过调节 AKT/NRF2/HO-1/Caspase-3 信号轴减弱斑马鱼氧化应激诱导的细胞凋亡
阅读:7
作者:Dai Jili, E Zhizhou, Bi Yannan, Yin Zetao, Wang Yanfang, Wang Xingyu, Jia Xiaoe, Zou Bo
| 期刊: | Molecules | 影响因子: | 4.600 |
| 时间: | 2025 | 起止号: | 2025 May 28; 30(11):2355 |
| doi: | 10.3390/molecules30112355 | 研究方向: | 信号转导、细胞生物学 |
| 信号通路: | Apoptosis | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
