Intracerebellar upregulation of Rheb(S16H) ameliorates motor dysfunction in mice with SCA2.

小脑内 Rheb(S16H) 上调可改善 SCA2 小鼠的运动功能障碍

阅读:8
作者:Kim Sehwan, Park Junwoo, Eo Hyemi, Lee Gi Beom, Park Se Min, Shin Minsang, Lee Seung Eun, Nam Youngpyo, Kim Sang Ryong
Cerebellar ataxia (CA) is characterized by impaired balance and coordination due to the loss of cerebellar neurons caused by various factors, and effective treatments are currently lacking. Recently, we observed reduced expression of signaling molecules in the mammalian target of rapamycin complex 1 (mTORC1) pathway in the cerebellum of mice with spinocerebellar ataxia type 2 (SCA2) compared with wild-type mice. To investigate the effects of mTORC1 upregulation on motor dysfunction in mice with SCA2, we administered an intracerebellar injection of adeno-associated virus serotype 1 carrying a constitutively active form of Ras homolog enriched in brain [Rheb(S16H)], which is an upstream activator of mTORC1. This treatment led to increased Rheb(S16H) expression in calbindin-D28K-positive Purkinje cells and increased levels of neurotrophic factors. Additionally, Rheb(S16H) upregulation reduced abnormal behaviors and protected Purkinje cells in mice with SCA2. Our findings suggest that upregulating Rheb(S16H) in the cerebellum may be a promising therapeutic strategy for hereditary CA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。