Pathway-based cancer transcriptome deciphers a high-resolution intrinsic heterogeneity within bladder cancer classification.

基于通路分析的癌症转录组揭示了膀胱癌分类中高分辨率的内在异质性

阅读:11
作者:Wang Zhan, Zhou Zhaokai, Yang Shuai, Li Zhengrui, Shi Run, Wang Ruizhi, Liu Kui, Tang Xiaojuan, Li Qi
BACKGROUND: The heterogeneity of bladder cancer (BLCA) is affected by its inherent transcriptional properties and tumor microenvironment (TME). Stromal transcriptional components in the TME significantly influence the transcriptional classification of BLCA, and the intrinsic biological transcriptional characteristics of cancer cells may be obscured by the dominant, lineage-dependent transcriptional components of stromal origin. This study aimed to explore the degree and mechanisms by which cancer-intrinsic gene expression profiles contribute to the classification and prognosis of BLCA patients. MATERIALS AND METHODS: In this study, BLCA single-cell transcriptome data from GSE135337 were used to identify pure tumor cells in BLCA and explore the different intrinsic heterogeneous cell subgroups of BLCA through pathway-based cancer transcriptome classification. Additionally, BLCA intrinsic subtypes were uncovered in the TCGA BLCA dataset based on the characteristic genes of the subgroups. Lastly, various machine learning algorithms were applied to identify novel potential targets of BLCA, following which their pro-tumorigenic effects were experimentally verified. RESULTS: Four BLCA intrinsic subtypes with different molecular, functional and phenotypic characteristics were successfully identified. Specifically, MA and DP subtypes demonstrated malignant phenotypes, accompanied by unfavorable clinical prognoses, limited involvement in cell death pathways, marked cell proliferation, and diminished immune activation. Notably, MA subtype exhibited the most favorable response to immunotherapy, potentially attributable to its distinctive tumor immune microenvironment. DSM subtype represented an immune-rich subtype with the optimal prognosis, characterized by abundant immune cells, high levels of co-stimulatory, co-inhibitory, major histocompatibility complex molecules, and a potential for immunotherapy response. On the other hand, HM subtype was associated with a high level of autophagy and necrosis and an "immune-hot" TIME. Furthermore, BLCA intrinsic subtypes effectively classified independent sets of BLCAs, with limited overlap with existing transcriptional classifications and showcasing unprecedented predictive and prognostic value. Finally, the DP subtype, associated with the worst prognosis, was further analyzed, leading to the identification of three potential target genes (DAD1, CYP1B1, and REXO2) significantly associated with metabolic disorders, as well as BLCA stage and grade. CONCLUSION: This study identified a promising platform for understanding intrinsic tumor heterogeneity, which could offer new insights into the intricate molecular mechanisms of BLCA. Targeted therapy against BEXO2 may improve the prognosis of BLCA patients by regulating mitochondria-related metabolic disorders.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。