Considering the similarity between the invasion processes of cancer cells and embryo implantation, three-dimensional culture models used to study cancer cell invasion can also be applied to embryo implantation studies. In our study, endometrial epithelial cell line (RL95-2) and spheroid-forming trophoblast-like choriocarcinoma cell line (JAR) were cultured on three different biocompatible tissue scaffolds: bacterial cellulose, collagen foam and collagen fibre. These scaffolds are frequently used in cancer cell metastasis and invasion studies, A three-dimensional endometrium-like culture system was established to quantitatively investigate the role of E-cadherin, N-cadherin, Vimentin, α-smooth muscle actin and Syndecan-1 proteins in the type 1 epithelial mesenchymal transition mechanism observed during the invasion step of the implantation process. Based on the findings from the three-dimensional cell culture, the bacterial cellulose scaffold promoted the proliferation of RL95-2 cells and delayed JAR spheroid formation. The collagen foam scaffold favored the proliferation of RL95-2 cells and accelerated JAR spheroid formation. The collagen fibre scaffold is important for supporting cell topography and, when combined with collagen foam, may offer a potential solution for investigating 3D endometrium-like culture systems. Immunocytochemical and immunofluorescence analyses showed that scaffolds modulate the invasion process by affecting the expression of epithelial mesenchymal transition proteins in cells. The findings suggest that different tissue scaffolds can produce varying effects in endometrium-like culture systems, and combinations of these materials may yield more effective results in future studies. This research represents a critical step in studying cell behavior in 3D culture systems and elucidates the mechanism of endometrial invasion.
The role of Collagen Tissue Scaffolds in 3D Endometrial-like Culture Systems: Important Contributions to Cell Invasion and Cell Topography.
胶原组织支架在 3D 子宫内膜样培养系统中的作用:对细胞侵袭和细胞形貌的重要贡献
阅读:5
作者:Kendirci-Katirci Remziye, Sendemir Aylin, HameÅ Elif Esin, Vatansever H Seda
| 期刊: | Reproductive Sciences | 影响因子: | 2.500 |
| 时间: | 2025 | 起止号: | 2025 Mar;32(3):895-906 |
| doi: | 10.1007/s43032-025-01800-2 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
