Biofouling and foreign body responses have deleterious effects on the functionality and longevity of implantable biosensors, seriously impeding their implementation for long-term monitoring. Here, we describe a nanocomposite coating composed of a cross-linked lattice of bovine serum albumin and pentaamine-functionalized reduced graphene that is covalently coupled to antibody ligands for analyte detection as well as antibiotic drugs (gentamicin or ceftriaxone), which actively combats biofouling while retaining high electroconductivity and excellent electrochemical immunosensor behavior. Sensors overlaid with this coating inhibit the proliferation of Pseudomonas aeruginosa bacteria and adhesion of primary human fibroblasts while not having any significant effects on fibroblast viability or on the immune function of primary human monocytes. Under these conditions, the sensor maintains its electrochemical stability for at least 3 weeks after exposure to soluble proteins that interfere with the activity of uncoated sensors. Proof-of-concept for the coating's applicability is demonstrated by integrating the antimicrobial coating within an immunosensor and demonstrating the detection of cytokines in both culture medium and complex human plasma. This new coating technology holds the potential to substantially increase the lifespan of implanted biosensors and widen their application areas, potentially enabling continuous monitoring of analytes in complex biofluids for weeks in vivo.
An Antimicrobial and Antifibrotic Coating for Implantable Biosensors.
一种用于植入式生物传感器的抗菌抗纤维化涂层
阅读:11
作者:Wareham-Mathiassen Sofia, Jolly Pawan, Radha Shanmugam Nandhinee, Jagannath Badrinath, Prabhala Pranav, Zhai Yunhao, Ozkan Alican, Naziripour Arash, Singh Rohini, Bengtsson Henrik, Bjarnsholt Thomas, Ingber Donald E
| 期刊: | Biosensors-Basel | 影响因子: | 5.600 |
| 时间: | 2025 | 起止号: | 2025 Mar 6; 15(3):171 |
| doi: | 10.3390/bios15030171 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
