Integrated Computational and Functional Screening Identifies G9a Inhibitors for SETD2-mutant Leukemia

综合计算和功能筛选鉴定出SETD2突变型白血病的G9a抑制剂

阅读:1
作者:Ya Zhang (张亚) ,Mengfang Xia (夏梦芳) ,Zhenyi Yi (易真伊) ,Pinpin Sui (岁品品) ,Xudong He (何旭东) ,Liping Wang (王丽萍) ,Qiyi Chen (陈祺仪) ,Hong-Hu Zhu (主鸿鹄) ,Gang Huang (黄刚) ,Qian-Fei Wang (王前飞)
SETD2, a frequently mutated epigenetic tumor suppressor gene in acute leukemia, is associated with chemotherapy resistance and poor patient outcomes. To explore potential therapeutics for SETD2-mutant leukemia, we employed an integrated approach combining computational prediction with epigenetic compound library screening. This approach identified G9a inhibitors as promising candidates, capable of reversing gene expression signatures associated with Setd2 deficiency and selectively inhibiting SETD2-deficient cells. RNA sequencing analysis revealed that the G9a inhibitor significantly downregulated Myc and Myc-regulated genes involved in translation, DNA replication, and G1/S transition in Setd2-mutant cells. Further chromatin immunoprecipitation sequencing analysis showed that G9a inhibition reduced H3K9me2 levels at the long non-coding RNA Mir100hg locus, coinciding with specific upregulation of the embedded microRNA let-7a-2 in Setd2-mutant cells. Given the established role of let-7a in MYC suppression, these findings suggest a potential mechanism by which G9a inhibitors induce MYC downregulation in SETD2-mutant leukemia. Additionally, correlation analysis between computational predictions and phenotypic outcomes highlighted the MYC signature as a key predictor of drug efficacy. Collectively, our study identifies G9a inhibitors as a promising therapeutic avenue for SETD2-mutant leukemia and provides novel insights into refining drug prediction strategies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。