The aim of the present study was to investigate the protective effect of ozone oxidative preconditioning (OOP) on renal oxidative stress injury in a rat model of kidney transplantation. Thirty-six male Sprague Dawley (SD) rats were randomly divided into three groups: A sham (S) group, a kidney transplantation (KT) group and an OOP and kidney transplantation (OOP+KT) group. In the S group, the rats' abdomens were opened and closed without transplantation. In the KT group, the rats received a left kidney from donor SD rats. In the OOP+KT group, donor SD rats received 15 OOP treatments by transrectal insufflations (1 mg/kg), once a day, at an ozone concentration of 50 µg/ml, before the kidney transplantation. Twenty-four hours after transplantation, the parameters of renal function of the recipients were measured. The morphology and pathological effects of renal allograft were examined using hematoxylin and eosin staining, periodic acid-Schiff staining, a terminal deoxynucleotidyl transferase dUTP nick end labeling assay and immunohistochemistry. Markers of oxidative stress were also detected using the thiobarbituric acid method, and expression levels of Nrf-2 and HO-1 were determined by western blot analysis. Blood urea nitrogen and creatinine levels were significantly decreased in the OOP+KT group compared with the KT group, and the morphology and pathological changes of renal allograft were also less severe. Meanwhile, the renal allograft cell apoptosis index was significantly higher in the KT group compared to the OOP+KT group (P<0.05). Levels of superoxide dismutase, glutathione and catalase in the renal allografts were significantly higher in the OOP+KT group compared to those in the KT group (P<0.05), while malondialdehyde levels were significantly lower in the OOP+KT group compared to those in the KT group (P<0.05). Western blot analysis indicated that the expression levels of nuclear factor erythroid 2-related factor 2 (Nrf-2) and heme oxygenase 1 (HO-1) were significantly higher in the OOP+KT compared to the KT group (P<0.05). In conclusion, the mechanism by which OOP alleviates oxidative stress injury in renal transplantation may be related to the activation of the signaling pathways of Nrf-2/HO-1 and inhibition of renal tubular epithelial cell apoptosis.
Effect of ozone oxidative preconditioning on oxidative stress injury in a rat model of kidney transplantation.
臭氧氧化预处理对大鼠肾移植模型氧化应激损伤的影响
阅读:10
作者:Qiu Tao, Wang Zhi-Shun, Liu Xiu-Heng, Chen Hui, Zhou Jiang-Qiao, Chen Zhi-Yuan, Wang Min, Jiang Guan-Jun, Wang Lei, Yu Gang, Zhang Long, Shen Ye, Zhang Lu, He Li, Wang Hua-Xin, Zhang Wen-Jing
| 期刊: | Experimental and Therapeutic Medicine | 影响因子: | 2.300 |
| 时间: | 2017 | 起止号: | 2017 May;13(5):1948-1955 |
| doi: | 10.3892/etm.2017.4193 | 种属: | Rat |
| 研究方向: | 毒理研究 | 疾病类型: | 肾损伤 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
