Mitochondrial dysfunction is present in the ovaries of patients with polycystic ovary syndrome (PCOS). Melatonin (MT) has shown promise in treating PCOS by improving mitochondrial dysfunction, though the underlying mechanisms remain unclear. In this study, we first assessed the levels of proteins associated with mitochondrial autophagy and dynamics in ovary granulosa cells (GCs) of PCOS patients and in the ovaries of DHEA-induced PCOS mice. We found abnormal expression of these proteins, indicating the presence of mitochondrial dysfunction in PCOS ovaries. Notably, the expression of the circadian gene Clock and melatonin synthetic enzymes were also decreased in the ovaries of PCOS patients. Studies have suggested a potential role of circadian rhythm genes in the pathogenesis and progression of PCOS. We subsequently observed that pretreatment with MT could ameliorate the abnormal levels of mitochondrial-related proteins, reverse the low expression of CLOCK, and reduce pyroptosis in PCOS ovaries. Given the potential interaction between MT and Clock, we focused on whether exogenous MT improves mitochondrial dysfunction in PCOS ovaries by regulating the expression of the circadian gene Clock. Through in vitro culture of the human ovarian granulosa cell line KGN, we further found that when CLOCK levels were inhibited, the beneficial effects of MT on abnormal mitochondrial autophagy, disturbed mitochondrial dynamics, and mitochondrial dysfunction in PCOS ovaries were not significant, and there was no notable improvement in ovary GCs pyroptosis. Our study suggests that MT may improve ovary mitochondrial dysfunction by regulating circadian gene Clock while also reducing GCs pyroptosis in PCOS.
Melatonin refines ovarian mitochondrial dysfunction in PCOS by regulating the circadian rhythm gene Clock.
褪黑素通过调节昼夜节律基因 Clock 来改善多囊卵巢综合征中的卵巢线粒体功能障碍
阅读:6
作者:Chen Wenxiu, Zhang Hongyan, Guo Bao, Tao Yumei, Zhang Junhui, Wang Jiayi, Chen Guangyi, Cheng Mengting, Hong Qiang, Cao Yunxia, Xie Fenfen
| 期刊: | Cellular and Molecular Life Sciences | 影响因子: | 6.200 |
| 时间: | 2025 | 起止号: | 2025 Mar 6; 82(1):104 |
| doi: | 10.1007/s00018-025-05609-9 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
