Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) show potential as neuroregenerative therapies. Incorporating bioactive compounds such as neuropeptides that enhance brain-derived neurotrophic factor (BDNF) expression may amplify their therapeutic potential. We developed a clinical-scale method for loading neuropeptides into MSC-EVs, while preserving their structural integrity and therapeutic functionality. Through scalable 3D bioprocessing, we produced high-purity MSC-EVs and evaluated loading methods for encapsulating neuropeptides and full-length BDNF. EVs were characterized using electron microscopy, nanoparticle tracking analysis, and 3D STORM microscopy. The cellular uptake, distribution, and biological effects of neuropeptide-loaded MSC-EVs were tested in vitro and in vivo. Passive incubation was the optimal loading method for maintaining EV integrity while achieving effective neuropeptide encapsulation. Active loading methods destabilized the EV membrane despite higher encapsulation efficiency. Neuropeptide-loaded MSC-EVs crossed the blood-brain barrier (BBB) and significantly enhanced BDNF expression, neurogenesis, and neuroprotection in vitro, ex vivo, and in vivo. Compared with HEK293-derived extracellular vesicles (HEK-EVs), MSC-EVs demonstrated superior regenerative effects. In a photothrombotic stroke model, intranasal administration of neuropeptide-loaded MSC-EVs reduced infarct size, improved neuronal survival, and activated neuroprotective pathways mediated by Cyclic AMP Response Element-Binding protein (CREB) phosphorylation. We established a clinically scalable approach for producing neuropeptide-loaded MSC-EVs with potential as next-generation, targeted neuroregenerative therapies for treating stroke and other neurological disorders. Importantly, the EVs used in this study were produced under clinically applicable conditions and characterized according to the Minimal Information for Studies of Extracellular Vesicles (MISEV) 2023 guidelines.
Engineered MSC-EVs loaded with BDNF-enhancing neuropeptides via a non-disruptive method enhance post-stroke neuroregeneration via intranasal delivery.
通过非破坏性方法,将载有 BDNF 增强神经肽的工程化 MSC-EV 进行鼻内给药,可增强中风后神经再生
阅读:10
作者:Kim Ji-Eun, Ji Ye Eun, Hwang Hyeon Jun, Go Ga-Eun, Lim Hyung-Jun, Yoo Jaein, Kim Jooho, Park Doil, Kim Eun Hee, Kim Doory, Bang Oh Young
| 期刊: | Journal of Nanobiotechnology | 影响因子: | 12.600 |
| 时间: | 2025 | 起止号: | 2025 Aug 29; 23(1):594 |
| doi: | 10.1186/s12951-025-03654-x | 研究方向: | 神经科学 |
| 疾病类型: | 中风 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
