Measuring SARS-CoV-2 RNA in Bangkok wastewater treatment plants and estimating infected population after fully opening the country in 2023, Thailand.

在泰国曼谷污水处理厂测量 SARS-CoV-2 RNA,并估算 2023 年泰国全面开放后感染人口

阅读:6
作者:Saita Thanchira, Thitanuwat Bussarakam, Niyomdecha Nattamon, Prasertsopon Jarunee, Lerdsamran Hatairat, Puthavathana Pilaipan, Noisumdaeng Pirom
Wastewater-based epidemiology (WBE) has been employed for monitoring the presence of SARS-CoV-2 infected population. Herein, the study aims to apply the WBE for surveillance and monitoring SARS-CoV-2 in Bangkok, where the highest official covid-19 cases reported in Thailand, during the fully opening for international tourists in early 2023. A total of 200 wastewater samples (100 influent and 100 effluent samples) were collected from 10 wastewater treatment plants (WWTPs) during January-May 2023. SARS-CoV-2 RNA was detected by real time qRT-PCR with accounting for 51% (102/200). Of these, 88% (88/100) and 14% (14/100) were detected in influent and effluent samples, respectively. The SARS-CoV-2 RNA concentration was detected in ranged of 4.76 × 10(2)-1.48 × 10(5) copies/L. The amount of SARS-CoV-2 RNA has increased approximately 4 times from the lag phase (January-March) to the log phase (April-May). Spearman's correlation coefficient revealed that correlation between estimated infected population and weekly reported cases was statistically significant (p-value = 0.017). SARS-CoV-2 RNA in influent had a statistically significant relationship with weekly reported cases (r = 0.481, p-value < 0.001). Lag time analysis revealed early warning 1-3 weeks before rising covid-19 cases observed. GIS was applied for spatial-temporal analysis at the province level, suggesting real time dashboard should be further developed.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。