Measuring SARS-CoV-2 RNA in Bangkok wastewater treatment plants and estimating infected population after fully opening the country in 2023, Thailand.

在泰国曼谷污水处理厂测量 SARS-CoV-2 RNA,并估算 2023 年泰国全面开放后感染人口

阅读:11
作者:Saita Thanchira, Thitanuwat Bussarakam, Niyomdecha Nattamon, Prasertsopon Jarunee, Lerdsamran Hatairat, Puthavathana Pilaipan, Noisumdaeng Pirom
Wastewater-based epidemiology (WBE) has been employed for monitoring the presence of SARS-CoV-2 infected population. Herein, the study aims to apply the WBE for surveillance and monitoring SARS-CoV-2 in Bangkok, where the highest official covid-19 cases reported in Thailand, during the fully opening for international tourists in early 2023. A total of 200 wastewater samples (100 influent and 100 effluent samples) were collected from 10 wastewater treatment plants (WWTPs) during January-May 2023. SARS-CoV-2 RNA was detected by real time qRT-PCR with accounting for 51% (102/200). Of these, 88% (88/100) and 14% (14/100) were detected in influent and effluent samples, respectively. The SARS-CoV-2 RNA concentration was detected in ranged of 4.76 × 10(2)-1.48 × 10(5) copies/L. The amount of SARS-CoV-2 RNA has increased approximately 4 times from the lag phase (January-March) to the log phase (April-May). Spearman's correlation coefficient revealed that correlation between estimated infected population and weekly reported cases was statistically significant (p-value = 0.017). SARS-CoV-2 RNA in influent had a statistically significant relationship with weekly reported cases (r = 0.481, p-value < 0.001). Lag time analysis revealed early warning 1-3 weeks before rising covid-19 cases observed. GIS was applied for spatial-temporal analysis at the province level, suggesting real time dashboard should be further developed.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。