Smoltification is stressful for salmonids, and cortisol is one of the central endocrine regulators for seawater adaptation. It has been established that cortisol plays both mineralocorticoid and glucocorticoid functions by MR and GR, respectively, since the aldosterone hormone is absent. Recently, investigations have proposed that the 11-deoxycorticosterone (DOC) mineralocorticoid precursor might support cortisol effects, but this mechanism remains unclear. Hence, we assessed the early effects of DOC on rainbow trout pre-smolts, the key smoltification stage, via metabolic and transcriptomic approaches. Thirty-six juveniles (~120 g) were treated for 3 h with DOC (1 mg/kg) and/or mineralocorticoid (eplerenone) or glucocorticoid (mifepristone) receptor antagonists (n = 6 for each group). DOC decreased plasma glucose and pyruvate and increased phosphate and liver glycogen. DOC also downregulated carbohydrate metabolism-related genes in the liver. Finally, gill RNA-seq analysis presented 1660 differentially expressed transcripts in DOC versus vehicle, 1022 for eplerenone + DOC versus DOC and 3324 for mifepristone + DOC versus DOC. The enrichment analysis mainly revealed the upregulation of ion transmembrane transport and carbohydrate metabolism and the downregulation of stress and innate immune responses. This suggests a significant role of DOC in liver carbohydrate metabolism and gill osmoregulation of pre-smolts through both receptors. Hence, this could contribute to improving animal welfare monitoring during smoltification by featuring novel and potential biomarkers.
Rainbow Trout (Oncorhynchus mykiss) Pre-Smolts Treated with 11-Deoxycorticosterone Regulate Liver Carbohydrate Metabolism and Gill Osmoregulation.
用 11-脱氧皮质酮处理的虹鳟(Oncorhynchus mykiss)幼鱼可调节肝脏碳水化合物代谢和鳃渗透调节
阅读:7
作者:Zuloaga Rodrigo, Ahumada-Langer Luciano, Aedo Jorge Eduardo, Llanos-Azócar Katalina, Molina Alfredo, Valdés Juan Antonio
| 期刊: | International Journal of Molecular Sciences | 影响因子: | 4.900 |
| 时间: | 2025 | 起止号: | 2025 Apr 15; 26(8):3725 |
| doi: | 10.3390/ijms26083725 | 研究方向: | 代谢 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
