Macropinocytosis and Fast Endophilin-Mediated Endocytosis Mediate Absorption of Garlic Chive-Derived Vesicle-like Nanoparticles in Human Intestinal Epithelial Cells

巨胞饮作用和快速内吞蛋白介导的内吞作用介导人肠上皮细胞对韭菜衍生的囊泡状纳米颗粒的吸收

阅读:2
作者:Phuong Linh Nguyen ,Baolong Liu ,Shuying Zhang ,Jingjie Hao ,Jiujiu Yu
Dietary extracellular vesicles (EVs) or vesicle-like nanoparticles (VLNs) have been shown to exert beneficial functions in a wide range of diseases such as cancer, colitis, and metabolic diseases. They have also been used as natural carriers for medications. Despite the promising translational potential of dietary EVs or VLNs, the molecular mechanisms of their absorption in the gastrointestinal tract are not well understood. In this study, we investigated the absorption mechanisms of garlic chive-derived VLNs (GC-VLNs) using C57BL/6J mice and a human intestinal epithelial cell line, Caco-2 cells. We found that orally administered GC-VLNs crossed the epithelial layer of the small intestine and entered the underlying lamina propria. GC-VLNs were taken up and transported across the fully differentiated Caco-2 epithelial monolayer. Proteins and lipids, but not RNAs, in GC-VLNs mediated their uptake by Caco-2 cells. Chemical inhibitor treatments demonstrated that macropinocytosis and fast endophilin-mediated endocytosis (FEME) played key roles in the internalization of GC-VLNs. On the other hand, clathrin-coated pit-mediated endocytosis and clathrin-independent carrier/glycosylphosphatidylinositol-anchored protein-enriched early endocytic compartment endocytosis did not contribute to GC-VLN uptake. Activation of macropinocytosis and FEME using their specific activators promoted the internalization of GC-VLNs. In addition, genetic manipulation of key molecules in macropinocytosis and FEME confirmed the important engagement of these two specific endocytic pathways in GC-VLN absorption by human intestinal epithelial cells. Our study has provided proof-of-principle evidence to advance our understanding of the absorption mechanism of GC-VLNs, which would be the key to further manipulation and engineering of these nanoparticles to improve their delivery efficiency as therapeutic modalities or drug carriers.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。