Seawater drowning-induced acute lung injury (ALI) presents a significant challenge due to the lack of effective prevention and treatment strategies. Hesperidin (Hep) possesses diverse biological activities, including potent antioxidant and anti-inflammatory effects. However, its clinical utility is hindered by poor solubility and limited bioavailability. Therefore, there is an urgent need for the modification of hesperidin to enhance its water solubility and expand its therapeutic potential. In this study, an inhalable formulation of Hep-β-cyclodextrin inclusion complexes (Hep-β-CD) was developed as a promising approach for the management of seawater drowning-induced ALI. The cytotoxicity assessment in BEAS-2B cells revealed minimal adverse effects associated with Hep-β-CD. The administration of Hep-β-CD via the pulmonary route has been found to be highly effective in preventing seawater drowning-induced ALI in mice, achieved through modulation of key inflammatory mediators and a reduction in oxidative stress. The study demonstrated that Hep-β-CD administration significantly decreased the levels of pro-inflammatory cytokines such as Tumor Necrosis Factor-alpha (TNF-α) and Interleukin-6 (IL-6), which are known to contribute to the pathogenesis of ALI. Additionally, the levels of malondialdehyde (MDA) were decreased and the levels of Superoxide Dismutase (SOD) were increased. In summary, the pulmonary delivery of Hep-β-CD was identified as a promising therapeutic strategy for preventing seawater drowning-induced ALI due to its ability to directly distribute the drug to the lungs, where it exerts a dual action of modulating the immune response to reduce inflammation and enhance the antioxidant defense mechanism.
Hesperidin-β-Cyclodextrin inclusion complexes: A novel approach for preventing and treating acute lung injury caused by seawater drowning.
橙皮苷-β-环糊精包合物:预防和治疗海水溺水引起的急性肺损伤的新方法
阅读:5
作者:Hou Jingjing, Zhang Mengdi, Han Zheyi, Wang Wanmei, Qiu Haiying, Yuan Jingwei, An Fang, Wu Yan
| 期刊: | International Journal of Pharmaceutics-X | 影响因子: | 5.200 |
| 时间: | 2025 | 起止号: | 2025 Aug 20; 10:100379 |
| doi: | 10.1016/j.ijpx.2025.100379 | 研究方向: | 毒理研究 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
