Microglial activation-induced neuroinflammation and impaired neuronal mitophagy are recognized as pivotal pathogeneses in Parkinson's disease (PD). However, the role of microglial mitophagy in microglial activation during PD development remains unclear, and therapeutic interventions targeting this interaction are lacking. Rhapontigenin (Rhap), a stilbenoid enriched in Vitis vinifera, exhibits dual anti-neuroinflammatory and mitophagy-enhancing properties, but its therapeutic potential and mechanisms in PD are unexplored. This study aimed to investigate the therapeutic efficacy of Rhap on neurodegeneration in a PD model and explore its underlying mechanism. Here, we showed that Rhap administration significantly ameliorated motor deficits, dopaminergic neuron loss, and neuroinflammation in MPTP-induced PD mice. Mechanistically, Rhap suppressed neuroinflammation by inhibiting the cGAS-STING-NF-κB signaling axis in both PD model mice and MPPâº-induced BV2 microglia. Crucially, its anti-inflammatory effects depend on the PINK1-mediated enhancement of microglial mitophagy to control cytosolic mtDNA leakage. Specifically, Rhap bound to PINK1 strengthened the PINK1-DRP1 interaction, promoted mitochondrial fission in damaged organelles, and enhanced mitophagy clearance. This mitophagy activation prevents cytosolic leakage of mitochondrial DNA (mtDNA), thereby attenuating mtDNA-cGAS-STING-NF-κB-derived neuroinflammation and subsequent neurodegeneration in PD. PINK1 deficiency in BV2 microglia abolished Rhap's ability to suppress mtDNA-cGAS-STING-NF-κB activation and enhance mitophagy. Overall, our study reveals a previously unrecognized mechanism by which Rhap ameliorates PD-associated neurodegeneration through dual modulation of PINK1/DRP1-dependent microglial mitophagy and the mtDNA-cGAS-STING-NF-κB neuroinflammatory axis, suggesting a potential therapeutic strategy for PD and related neurodegenerative disorders.
Rhapontigenin attenuates neurodegeneration in a parkinson's disease model by downregulating mtDNA-cGAS-STING-NF-κB-mediated neuroinflammation via PINK1/DRP1-dependent microglial mitophagy.
Rhapontigenin 通过 PINK1/DRP1 依赖的小胶质细胞线粒体自噬下调 mtDNA-cGAS-STING-NF-κB 介导的神经炎症,从而减轻帕金森病模型中的神经退行性变
阅读:5
作者:Su Zhongqiang, Shu Hui, Huang Xingting, Ding Liuyan, Liang Fengchu, Xu Zongtang, Zhu Ziting, Chen Minshan, Wang Xiaobei, Li Guihua, Xia Huan, Cao Qiannan, Zhang Wenlong, Xu Pingyi, Yang Xinling
| 期刊: | Cellular and Molecular Life Sciences | 影响因子: | 6.200 |
| 时间: | 2025 | 起止号: | 2025 Sep 6; 82(1):337 |
| doi: | 10.1007/s00018-025-05873-9 | 靶点: | IGE |
| 研究方向: | 神经科学、细胞生物学 | 疾病类型: | 帕金森、神经炎症 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
