Genetic Ablation of Sarm1 Mitigates Disease Acceleration after Traumatic Brain Injury in the SOD1G93A Transgenic Mouse Model of Amyotrophic Lateral Sclerosis

在肌萎缩侧索硬化症的SOD1G93A转基因小鼠模型中,Sarm1基因的缺失可减轻创伤性脑损伤后的疾病加速进展。

阅读:3
作者:Elif O Dogan ,Sean R Simonini ,James Bouley ,Alexandra Weiss ,Robert H Brown Jr ,Nils Henninger
OBJECTIVE: Approximately 20% of familial cases of amyotrophic lateral sclerosis (ALS) are caused by mutations in the gene encoding superoxide dismutase 1 (SOD1). Epidemiological data have identified traumatic brain injury (TBI) as an exogenous risk factor for ALS; however, the mechanisms by which TBI may worsen SOD1 ALS remain largely undefined. METHODS: We sought to determine whether repetitive TBI (rTBI) accelerates disease onset and progression in the transgenic SOD1(G93A) mouse ALS model, and whether loss of the primary regulator of axonal degeneration sterile alpha and TIR motif containing 1 (Sarm1) mitigates the histological and behavioral pathophysiology. We subjected wild-type (n = 23), Sarm1 knockout (KO; n = 17), SOD1(G93A) (n = 19), and SOD1(G93A)xSarm1(KO) (n = 26) mice of both sexes to rTBI or sham surgery at age 64 days (62-68 days). Body weight and ALS-deficit score were serially assessed up to 17 weeks after surgery and histopathology assessed in layer V of the primary motor cortex at the study end point. RESULTS: In sham injured SOD1(G93A) mice, genetic ablation of Sarm1 did not attenuate axonal loss, improve neurological deficits, or survival. The rTBI accelerated onset of G93A-SOD1 ALS, as indicated by accentuated body weight loss, earlier onset of hindlimb tremor, and shortened survival. The rTBI also triggered TDP-43 mislocalization, enhanced axonal and neuronal loss, microgliosis, and astrocytosis. Loss of Sarm1 significantly diminished the impact of rTBI on disease progression and rescued rTBI-associated neuropathology. INTERPRETATION: SARM1-mediated axonal death pathway promotes pathogenesis after TBI in SOD1(G93A) mice suggesting that anti-SARM1 therapeutics are a viable approach to preserve neurological function in injury-accelerated G93A-SOD1 ALS. ANN NEUROL 2025;97:963-975.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。