The antibacterial effect of non-thermal atmospheric pressure plasma treatment of titanium surfaces according to the bacterial wall structure

从细菌壁结构看非热常压等离子体处理钛表面的抗菌效果

阅读:8
作者:Myung-Jin Lee, Jae-Sung Kwon, Heng Bo Jiang, Eun Ha Choi, Gyungsoon Park, Kwang-Mahn Kim

Abstract

Titanium is commonly used as a biomaterial for dental implants. In this study, we investigated the antibacterial properties of titanium samples following treatment with a non-thermal atmospheric pressure plasma jet (NTAPPJ) on bacteria with two different cell wall structures, including gram-positive and gram-negative bacteria. The hydrophilicity and surface energy of titanium surfaces were significantly increased after NTAPPJ treatment without altering topographical features. Changes in the chemical composition and reductive potential were observed on the NTAPPJ-treated titanium surfaces. The adhesion and biofilm formation rate of bacteria were significantly reduced on the NTAPPJ-treated titanium surfaces compared with the untreated samples, which was confirmed by fluorescent imaging. Regarding the comparison between gram-positive and gram-negative bacteria, both adhesion and the biofilm formation rate were significantly lower for gram-negative bacteria than gram-positive bacteria on samples treated for longer durations with the NTAPPJ. Transmission electron microscopy imaging showed a comparably more disruptive membrane structure of gram-negative bacteria than gram-positive bacteria on the NTAPPJ-treated surfaces. Our results indicated that the NTAPPJ treatment could be useful for preventing bacterial adhesion and biofilm formation on titanium dental implant surfaces, while the reductive potential on surfaces treated by the NTAPPJ could cause oxidation of bacteria, which could be more sensitive to gram-negative bacteria due to differences in the cell wall structure.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。