Aims: Increasing nicotinamide adenine dinucleotide (NAD(+)) availability has been proposed as a therapeutic approach to prevent neurodegeneration in amyotrophic lateral sclerosis (ALS). Accordingly, NAD(+) precursor supplementation appears to exert neuroprotective effects in ALS patients and mouse models. The mechanisms mediating neuroprotection remain uncertain but could involve changes in multiple cell types. We investigated a potential direct effect of the NAD(+) precursor nicotinamide mononucleotide (NMN) on the health of cultured induced pluripotent stem cell (iPSC)-derived human motor neurons and in motor neurons isolated from two ALS mouse models, that is, mice overexpressing wild-type transactive response DNA binding protein-43 (TDP-43) or the ALS-linked human superoxide dismutase 1 with the G93A mutation (hSOD1(G93A)). Results: NMN treatment increased the complexity of neuronal processes in motor neurons isolated from both mouse models and in iPSC-derived human motor neurons. In addition, NMN prevented neuronal death induced by trophic factor deprivation. In mouse and human motor neurons expressing ALS-linked mutant superoxide dismutase 1, NMN induced an increase in glutathione levels, but this effect was not observed in nontransgenic or TDP-43 overexpressing motor neurons. In contrast, NMN treatment normalized the TDP-43 cytoplasmic mislocalization induced by its overexpression. Innovation: NMN can directly act on motor neurons to increase the growth and complexity of neuronal processes and prevent the death induced by trophic factor deprivation. Conclusion: Our results support a direct beneficial effect of NAD(+) precursor supplementation on the maintenance of the neuritic arbor in motor neurons. Importantly, this was observed in motor neurons isolated from two different ALS models, with and without involvement of TDP-43 pathology, supporting its therapeutic potential in sporadic and familial ALS. Antioxid. Redox Signal. 41, 573-589.
Nicotinamide Adenine Dinucleotide Precursor Supplementation Modulates Neurite Complexity and Survival in Motor Neurons from Amyotrophic Lateral Sclerosis Models.
烟酰胺腺嘌呤二核苷酸前体补充剂可调节肌萎缩侧索硬化症模型运动神经元的神经突复杂性和存活率
阅读:8
作者:Hamilton Haylee L, Akther Mahbuba, Anis Shaheer, Colwell Christopher B, Vargas Marcelo R, Pehar Mariana
| 期刊: | Antioxidants & Redox Signaling | 影响因子: | 6.100 |
| 时间: | 2024 | 起止号: | 2024 Sep;41(7-9):573-589 |
| doi: | 10.1089/ars.2023.0360 | 研究方向: | 神经科学 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
