Bronchial pyroptosis promotes Th17 inflammation in steroid-insensitive asthma mouse.

支气管焦亡促进类固醇不敏感型哮喘小鼠的 Th17 炎症

阅读:8
作者:Lin Yun, Yin Jianhua, Yang Xia, Wei Jianghong, Liang Yaxi, Zhou Chengfeng, Zou Dongfang, Chu Shuyuan
Bronchial cell pyroptosis and IL-17 respectively contribute- to the pathogenesis of steroid-insensitive asthma. In this study, we aim to explore the relationship between bronchial cell pyroptosis and Th17 in airway inflammation of steroid-insensitive asthma. The steroid-insensitive asthma model of mice was induced by toluene diisocyanate (TDI), which was also intraperitoneally injected with NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3) inhibitor MCC950. The bronchial epithelial cell pyroptosis was identified in morphology by transmission electron microscope. Protein expressions of pyroptosis cytokines (pro-Caspase-1, Caspase-1 p20, pro-GSDMD, cleaved-GSDMD and HMGB1), IL-17A, IL-17F and phosphorylated STAT3 (p-STAT3) in lung tissues were assessed by western blotting. Th17 in lung tissues was measured by flow cytometry. IL-17A + and p-STAT3 + cells in airway were identified by immunohistochemistry. In steroid-insensitive asthma mice, bronchial epithelial cell pyroptosis was confirmed in morphology using transmission electron microscope. Compared with controls, the protein expressions of Caspase-1 p20, cleaved-GSDMD and HMGB1 in lung tissues were increased in mice with steroid-insensitive asthma, which could be attenuated by MCC950. Th17 cells precentage and proteins expressions of p-STAT3, IL-17A and IL-17F were also increased in lung of steroid-insensitive asthmatic mice, which were also attenuated by MCC950. Similarly, the counts of IL-17A + cell and p-STAT3 + cell were more in airway of steroid-insensitive asthmatic mice than controls, and was attenuated by MCC950. In conclusion, bronchial epithelial cell pyroptosis could promote Th17 inflammation in airway of steroid-insensitive asthma mouse, which will provide further understanding on the interaction between innate immunity and acquired immunity in the pathogenesis of steroid-insensitive asthma.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。