Type III interferons (IFNs) primarily act on epithelial cells and protect against virus infection of the mucosa, whereas type I IFNs act more systemically. To date, it has been unknown which epithelial subtypes in the upper airways, the primary site for initial infection for most respiratory viruses, primarily rely on type III IFN or type I IFNs for antiviral protection. To address this question, we performed a single-cell transcriptomics analysis of the epithelial IFN-mediated response focusing on the upper airways of mice. This work identified nine distinct cell types derived from the olfactory epithelium and thirteen distinct cell types from the respiratory epithelium. Interestingly, type I IFNs induced a stronger antiviral transcriptional response than type III IFN in respiratory epithelial cells, whereas in olfactory epithelial cells, including sustentacular (SUS) and Bowman's gland cells (BGC), type III IFN was more dominant compared to type I IFN. SUS and BGC, which provide structural support and maintain the integrity of olfactory sensory neurons, were highly susceptible to infection with a mouse-adapted variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 MA20) but were protected against infection if the animals were prophylactically treated with type III IFN. These findings demonstrate a high degree of cell type heterogeneity in terms of interferon-mediated antiviral responses and reveal a potent role for type III IFNs in protecting the olfactory epithelium.IMPORTANCESARS-CoV-2 infects SUS and BGC in the olfactory epithelium, causing an impairment of structural support and integrity of olfactory sensory neurons that can result in severe olfactory dysfunctions. We observed an unexpected compartmentalization of the IFN-mediated transcriptional response within the airway epithelium, and we found that olfactory epithelial cells preferentially respond to type III IFN, which resulted in robust antiviral protection of SUS and BGC. Given the proximity of the olfactory epithelium to the central nervous system, we hypothesize that evolution favored a type III IFN-biased antiviral immune response in this tissue to limit inflammatory responses in the brain. Cell type-specific antiviral responses in the upper airways, triggered by the different types of IFNs, should be investigated in more detail and carefully taken into consideration during the development of IFN-based antivirals for clinical use.
Single-cell transcriptomics reveals a compartmentalized antiviral interferon response in the nasal epithelium of mice.
单细胞转录组学揭示了小鼠鼻上皮中抗病毒干扰素反应的区室化
阅读:9
作者:Wang Xuefei, Dong Meng, Wu Xinchao, Schnepf Daniel, Thiel Julia, Sun Wenfei, Wolfrum Christian, Li Sisi, Jin Wenfei, Staeheli Peter, Ye Liang
| 期刊: | Journal of Virology | 影响因子: | 3.800 |
| 时间: | 2025 | 起止号: | 2025 Mar 18; 99(3):e0141324 |
| doi: | 10.1128/jvi.01413-24 | 种属: | Viral |
| 研究方向: | 细胞生物学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
