Unbound cortisol in saliva, detectable through non-invasive sampling, is widely recognized as a validated biomarker for the biochemical evaluation of common mental disorders such as chronic stress, depression, anxiety, and post-traumatic stress disorder (PTSD). In this work, we report a novel polymer lab-on-a-chip (LOC) for microfluidic lateral flow assay (mLFA) with on-chip dried reagents for the detection of unbound cortisol in saliva using a competitive immunoassay protocol. The new polymer microchannel lateral flow assay on lab-on-a-chip (mLFA-LOC), replicated using injection molding technology, are composed of sequentially connected microchannels for sample loading, detection antibody immobilization, flow delay, sensing spirals for test and control, and a capillary pump at the end. The competitive immunoassay of cortisol can be autonomously performed through the microchannels after sample loading of the filtered saliva, and the fluorescence signals emitted from the sensing spirals are detected and quantified by a custom-designed, portable fluorescence analyzer developed in this work. For the evaluation of cortisol assay, artificial saliva samples spiked with unbound cortisol were analyzed using mLFA-LOC and the portable analyzer. The performed competitive assay of unbound cortisol showed a limit of detection (LoD) of 1.8 ng/mL and an inter-chip coefficient of variation (CV) of 4.0%, which covers the clinical range for on-site unbound salivary cortisol analysis. The newly developed mLFA-LOC platform certainly works successfully for the rapid on-site sampling and analysis of salivary biomarkers.
On-site analysis of cortisol in saliva based on microchannel lateral flow assay (mLFA) on polymer lab-on-a-chip (LOC).
基于聚合物芯片实验室 (LOC) 上的微通道侧向流动分析 (mLFA) 对唾液中的皮质醇进行现场分析
阅读:12
作者:Upaassana V Thiyagarajan, Setty Supreeth, Jang Heeyeong, Ghosh Sthitodhi, Ahn Chong
| 期刊: | Biomedical Microdevices | 影响因子: | 3.300 |
| 时间: | 2025 | 起止号: | 2025 Apr 10; 27(2):17 |
| doi: | 10.1007/s10544-025-00733-6 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
