Targeting inflammatory macrophages with hyaluronan tetrasaccharide: effects on fibroblast collagen degradation and synthesis.

以透明质酸四糖靶向炎症巨噬细胞:对成纤维细胞胶原蛋白降解和合成的影响

阅读:7
作者:Uno Eiko, Kim Florence, Yoshino Mihoko, Sato Yasunari, Hashimoto Masao, Watanabe Kenji, Mizukami Yoichi, Muto Jun
Hyaluronan (HA) provides moisturizing benefits and exhibits unique biological activities based on its molecular weight. While the anti-inflammatory effects of high-molecular-weight HA have been well studied, the impact of hyaluronan tetrasaccharide (HA4), an ultralow-molecular-weight HA, on the skin immune system is not fully understood. Thus, we investigated how HA4 affects the differentiation of M1 macrophages, which increase during photoaging. As a result, we added HA4 during the M1 macrophage differentiation phase and conducted a gene expression analysis. HA4 partially decreased the transition from M0 to M1 macrophages and reduced the expression of proinflammatory cytokines like IL-6. However, the M2 marker IL-1ra increased, while IL-10 levels remained constant, suggesting that HA4 does not fully polarize macrophages toward the M2 phenotype. Normal human dermal fibroblasts (NHDF) were treated with an M1 macrophage-conditioned medium (M1-CM) and a modified version containing HA4 (M1+HA4-CM). The M1+HA4-CM notably decreased the expression of IL-6 and IL-8, along with the collagen-degrading enzyme MMP1. Collagen synthesis assays showed that HA4 helped restore collagen fiber formation. Moreover, RNA-seq analysis of NHDF treated with the conditioned medium confirmed that M1+HA4-CM amplified the expression of genes related to collagen production while decreasing collagen-degrading enzyme gene expression. Neutralization assays employing a TLR4 antibody suggested that decreasing IL-6 in NHDF by HA4 may be independent of the TLR4 signaling pathway. HA4 is vital in partially suppressing M1 macrophage differentiation and the release of inflammatory factors, as well as regulating collagen remodeling in NHDF. These findings indicate that HA4 holds promise as a molecule for mitigating inflammation-induced collagen degradation by modulating macrophage activity in photoaged skin.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。