Spatial patterns and MRI-based radiomic prediction of high peritumoral tertiary lymphoid structure density in hepatocellular carcinoma: a multicenter study.

肝细胞癌中肿瘤周围三级淋巴结构密度高的空间模式和基于 MRI 的放射组学预测:一项多中心研究

阅读:6
作者:Long Shichao, Li Mengsi, Chen Juan, Zhong Linhui, Abudulimu Aerzuguli, Zhou Lan, Liu Wenguang, Pan Deng, Dai Ganmian, Fu Kai, Chen Xiong, Pei Yigang, Li Wenzheng
BACKGROUND: Tertiary lymphoid structures (TLS) within the tumor microenvironment have been associated with cancer prognosis and therapeutic response. However, the immunological pattern of a high peritumoral TLS (pTLS) density and its clinical potential in hepatocellular carcinoma (HCC) remain poor. This study aimed to elucidate biological differences related to pTLS density and develop a radiomic classifier for predicting pTLS density in HCC, offering new insights for clinical diagnosis and treatment. METHODS: Spatial transcriptomics (n=4) and RNA sequencing data (n=952) were used to identify critical regulators of pTLS density and evaluate their prognostic significance in HCC. Baseline MRI images from 660 patients with HCC who had undergone surgery treatment between October 2015 and January 2023 were retrospectively recruited for model development and validation. This included training (n=307) and temporal validation (n=76) cohorts from Xiangya Hospital, and external validation cohorts from three independent hospitals (n=277). Radiomic features were extracted from intratumoral and peritumoral regions of interest and analyzed using machine learning algorithms to develop a predictive classifier. The classifier's performance was evaluated using the area under the curve (AUC), with prognostic and predictive value assessed across four independent cohorts and in a dual-center outcome cohort of 41 patients who received immunotherapy. RESULTS: Patients with HCC and a high pTLS density experienced prolonged median overall survival (p<0.05) and favorable immunotherapy response (p=0.03). Moreover, immune infiltration by mature B cells was observed in the high pTLS density region. Spatial pseudotime analysis and immunohistochemistry staining revealed that expansion of pTLS in HCC was associated with elevated CXCL9 and CXCL10 co-expression. We developed an optimal radiomic-based classifier with excellent discrimination for predicting pTLS density, achieving an AUC of 0.91 (95% CI 0.87, 0.94) in the external validation cohort. This classifier also exhibited promising stratification ability in terms of overall survival (p<0.01), relapse-free survival (p<0.05), and immunotherapy response (p<0.05). CONCLUSION: We identified key regulators of pTLS density in patients with HCC and proposed a non-invasive radiomic classifier capable of assisting in stratification for prognosis and treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。