DNA loop formation by structural maintenance of chromosome (SMC) proteins, including cohesin, condensin, and the SMC5/6 complex, plays a pivotal role in genome organization. Despite its importance, the molecular mechanism underlying SMC-mediated loop formation, particularly how these complexes achieve persistent directionality (rectification) while minimizing backward steps during the formation of large loops, remains poorly understood. Here, we use atomic force microscopy (AFM) and computational simulation to uncover a key geometric feature of the yeast condensin SMC complex enabling rectified loop growth. Using AFM, we demonstrate that the hinge domain of yeast condensin exhibits a directional bias, extending orthogonally to the bound DNA and sampling an anisotropic region of space around the protein complex. By accounting for the geometric constraint on the hinge-mediated DNA-capture step, we computationally show that loop growth can spontaneously self-rectify. In contrast, an SMC model with broken detailed balance and isotropic search instead exhibited substantial loop shrinkage and random-walk-like behaviour. These findings reveal an overlooked, and potentially broadly conserved, anisotropic DNA capture mechanism through which SMC complexes form and stabilize DNA loops in vivo, in turn providing novel insights into the physical principles governing genome organization.
Spontaneously directed loop extrusion in SMC complexes emerges from broken detailed balance and anisotropic DNA search.
SMC复合物中自发定向的环挤出源于详细平衡的破坏和各向异性DNA搜索
阅读:8
作者:Bonato Andrea, Jang Jae-Won, Kim Do-Gyun, Moon Kyoung-Wook, Michieletto Davide, Ryu Je-Kyung
| 期刊: | Nucleic Acids Research | 影响因子: | 13.100 |
| 时间: | 2025 | 起止号: | 2025 Jul 19; 53(14):gkaf725 |
| doi: | 10.1093/nar/gkaf725 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
