OBJECTIVES: Due to increased gene dose for the amyloid precursor protein (APP), elderly adults with Down syndrome (DS) are at a markedly increased risk of Alzheimer's disease (AD), known as DS-AD. How the increased APP gene dose acts and which APP products are responsible for DS-AD is not well understood, thus limiting strategies to target pathogenesis. As one approach to address this question, we used a novel class of γ-secretase modulators that promote γ-site cleavages by the γ-secretase complex, resulting in lower levels of the Aβ42 and Aβ40 peptides. METHODS: Ts65Dn mice, which serve as a model of DS, were treated via oral gavage with 10âmg/kg/weekday of BPN15606 (a potent and novel pyridazine-containing γ-secretase modulators). Treatment started at 3âmonths-of-age and lasted for 4âmonths. RESULTS: Demonstrating successful target engagement, treatment with BPN15606 significantly decreased levels of Aβ40 and Aβ42 in the cortex and hippocampus; it had no effect on full-length APP or its C-terminal fragments in either 2âN or Ts65Dn mice. Importantly, the levels of total amyloid-β were not impacted, pointing to BPN15606-mediated enhancement of processivity of γ-secretase. Additionally, BPN15606 rescued hyperactivation of Rab5, a protein responsible for regulating endosome function, and normalized neurotrophin signaling deficits. BPN15606 treatment also normalized the levels of synaptic proteins and tau phosphorylation, while reducing astrocytosis and microgliosis, and countering cognitive deficits. INTERPRETATION: Our findings point to the involvement of increased levels of Aβ42 and/or Aβ40 in contributing to several molecular and cognitive traits associated with DS-AD. They speak to increased dosage of the APP gene acting through heightened levels of Aβ42 and/or Aβ40 as supporting pathogenesis. These findings further the interest in the potential use of γ-secretase modulators for treating and possibly preventing AD in individuals with DS. ANN NEUROL 2024;96:390-404.
γ-Secretase Modulator BPN15606 Reduced Aβ42 and Aβ40 and Countered Alzheimer-Related Pathologies in a Mouse Model of Down Syndrome.
γ-分泌酶调节剂 BPN15606 降低了 Aβ42 和 Aβ40,并对抗了唐氏综合征小鼠模型中的阿尔茨海默病相关病理
阅读:10
作者:Chen Xu-Qiao, Becker Ann, Albay Ricardo, Nguyen Phuong D, Karachentsev Dmitry, Roberts Amanda J, Rynearson Kevin D, Tanzi Rudolph E, Mobley William C
| 期刊: | Annals of Neurology | 影响因子: | 7.700 |
| 时间: | 2024 | 起止号: | 2024 Aug;96(2):390-404 |
| doi: | 10.1002/ana.26958 | 种属: | Mouse |
| 研究方向: | 其它 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
