Activation of macrophages by extracellular vesicles derived from Babesia-infected red blood cells.

巴贝虫感染的红细胞释放的细胞外囊泡激活巨噬细胞

阅读:9
作者:Hagos Biniam, Brasov Ioana, Branscome Heather, Rashid Sujatha, Bradford Rebecca, Leonelli Joseph, Kashanchi Fatah, Ben Mamoun Choukri, Molestina Robert E
Babesia microti is the primary cause of human babesiosis in North America. Despite the emergence of the disease in recent years, the pathogenesis and immune response to B. microti infection remain poorly understood. Studies in laboratory mice have shown a critical role for macrophages in the elimination of parasites and infected red blood cells (iRBCs). Importantly, the underlying mechanisms that activate macrophages are still unknown. Recent evidence identified the release of extracellular vesicles (EVs) from Babesia iRBCs. EVs are spherical particles released from cell membranes under natural or pathological conditions that have been suggested to play roles in host-pathogen interactions among diseases caused by protozoan parasites. The present study examined whether EVs released from cultured Babesia iRBCs could activate macrophages and alter cytokine secretion. An analysis of vesicle size in EV fractions from Babesia iRBCs showed diverse populations in the <100 nm size range compared to EVs from uninfected RBCs. In co-culture experiments, EVs released by B. microti iRBCs appeared to be associated with macrophage membranes and cytoplasm, indicating uptake of these vesicles in vitro. Interestingly, the incubation of macrophages with EVs isolated from Babesia iRBC culture supernatants resulted in the activation of NF-κB and modulation of pro-inflammatory cytokines. These results support a role for Babesia-derived EVs in macrophage activation and provide new insights into the mechanisms involved in the induction of the innate immune response during babesiosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。