Age-Dependent Histone Deacetylase 3 Regulation by βA3/A1-Crystallin and Inositol Hexaphosphate in Retinal Pigmented Epithelial Cells Reveals a Novel Pathway in Age-Related Macular Degeneration.

视网膜色素上皮细胞中βA3/A1-晶状体蛋白和肌醇六磷酸对年龄依赖性组蛋白去乙酰化酶3的调控揭示了年龄相关性黄斑变性的一条新途径

阅读:6
作者:Chatterjee Sujan, Ghosh Sayan, Sin Zachary, Babu Vishnu Suresh, Preval Loretta Viera, Davis Emily, Tran Nguyen, Bammidi Sridhar, Gautam Pooja, Hose Stacey, Sergeev Yuri, Flores-Bellver Miguel, Ritter Kevin, Jessen Henning J, Al Diri Issam, Sinha Debasish, Guha Prasun
Age-related macular degeneration (AMD), a leading cause of vision loss affecting retinal pigment epithelial (RPE) cells, remains largely unexplained by current genome-wide association studies (GWAS) risk variants. Our research on Cryba1, encoding βA3/A1-crystallin protein, reveals its crucial role in RPE cell function via a novel epigenetic mechanism, also evident in human atrophic AMD samples. Loss of Cryba1 in mouse RPE cells triggers epigenetic changes by reducing histone deacetylase 3 (HDAC3) activity through two mechanisms. First, Cryba1 depletion reduces inositol polyphosphate multikinase (IPMK) expression, which potentially reduces inositol hexakisphosphate (InsP6) generation since IPMK's kinase activity is essential for producing InsP4 and InsP5 as precursors to InsP6. Since InsP4, InsP5, or InsP6 is crucial for HDAC3's interaction with the corepressor's DAD domains, reduced IPMK expression in Cryba1-depleted cells likely diminishes the HDAC3-DAD interaction, leading to a reduction in HDAC3's activity. Second, reduced βA3/A1 protein in Cryba1-deficient cells impairs HDAC3's interaction with casein kinase 2 (CK2), resulting in decreased HDAC3 phosphorylation. Collectively, this increases H3K27 acetylation at the RET promoter region, likely enhancing the transcription of RET, a receptor tyrosine kinase critical for cell survival. Although RET is transcriptionally increased, Cryba1 loss disrupts its protein maturation, causing immature RET protein accumulation. This triggers age-dependent endoplasmic reticulum (ER) stress, potentially contributing to the pathogenesis of AMD. Interestingly, although Cryba1 is not identified as an AMD-linked variant in current GWAS, its loss may be linked to AMD mechanisms. These findings underscore the potential of gene-agnostic and epigenetic therapeutic strategies for treating AMD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。