Restoration of TP53 strategy via specific nanoparticles for ovarian cancer therapy.

利用特定纳米颗粒恢复TP53策略治疗卵巢癌

阅读:5
作者:Zhang Menglei, Gu Yuanyuan, Shen Fang, Gong Yingxin, Gu Zheng, Hua Keqin, Zhou Guannan, Ding Jingxin
The p53 tumor suppressor gene, a master regulator of diverse cellular pathways, is frequently altered in various cancers. Loss of function in tumor suppressor genes is commonly associated with the onset/progression of cancer and treatment resistance. Currently, approaches for restoration of TP53 expression, including small molecules and DNA therapies, have yielded progressive success, but each has formidable drawbacks. Here, we introduced an endogenous nanoplatform to effectively deliver the TP53 protein. Briefly speaking, the endogenous TP53 proteins were fused by the Lamp2b and loaded into extracellular vesicles-based nanoparticles, which could markedly restore the TP53 expression in natural TP53-deficient ovarian cancer (OCs) and subsequently inhibit cell proliferation as well as induce cell apoptosis. Moreover, a well-known biotin streptavidin binding strategy was used to confer the nanoplatform targeting ability. Since mesothelin (MSLN) expressed highly in ovarian cancer, the anti-MSLN nanoplatform were engineered to deliver TP53 proteins to MSLN ovarian cancer and exert the anti-tumor ability. Our findings indicated that restoration of tumor suppressors by the targeting nanoplatform could be promising nanotechnology approaches for potential ovarian cancer treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。