Resistance Exercise Improves Glycolipid Metabolism and Mitochondrial Biogenesis in Skeletal Muscle of T2DM Mice via miR-30d-5p/SIRT1/PGC-1α Axis.

抗阻运动通过 miR-30d-5p/SIRT1/PGC-1α 轴改善 T2DM 小鼠骨骼肌中的糖脂代谢和线粒体生物合成

阅读:5
作者:Zheng Lifang, Rao Zhijian, Wu Jiabin, Ma Xiaojie, Jiang Ziming, Xiao Weihua
Exercise is a recognized non-pharmacological treatment for improving glucose homeostasis in type 2 diabetes (T2DM), with resistance exercise (RE) showing promising results. However, the mechanism of RE improving T2DM has not been clarified. This study aims to investigate the effects of RE on glucose and lipid metabolism, insulin signaling, and mitochondrial function in T2DM mice, with a focus on the regulatory role of miR-30d-5p. Our results confirmed that RE significantly improved fasting blood glucose, IPGTT, and ITT in T2DM mice. Enhanced expression of IRS-1, p-PI3K, and p-Akt indicated improved insulin signaling. RE improved glycolipid metabolism, as well as mitochondrial biogenesis and dynamics in skeletal muscle of T2DM mice. We also found that miR-30d-5p was upregulated in T2DM, and was downregulated after RE. Additionally, in vitro, over-expression of miR-30d-5p significantly increased lipid deposition, and reduced glucose uptake and mitochondrial biogenesis. These observations were reversed after transfection with the miR-30d-5p inhibitor. Mechanistically, miR-30d-5p regulates glycolipid metabolism in skeletal muscle by directly targeting SIRT1, which affects the expression of PGC-1α, thereby influencing mitochondrial function and glycolipid metabolism. Taken together, RE effectively improves glucose and lipid metabolism and mitochondrial function in T2DM mice, partly through regulating the miR-30d-5p/SIRT1/PGC-1α axis. miR-30d-5p could serve as a potential therapeutic target for T2DM management.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。