The TaNHLP1-TaRACK1A module regulates tillering via abscisic acid signaling in wheat.

TaNHLP1-TaRACK1A 模块通过脱落酸信号调节小麦分蘖

阅读:6
作者:Si Yaoqi, Tian Shuiquan, Niu Jianqing, Lu Qiao, Shang Qiushuang, Ma Shengwei, Zhang Zhimeng, Du Tingting, Wu Huilan, Li Jundong, Zhang Xiansheng, Wang Fang, Ling Hong-Qing, Zheng Shusong
Wheat tillering is an important agronomic trait influencing grain yield. Here, we identify an NHL repeat-containing protein, TaNHLP1, which positively regulates tiller number in wheat. We discovered that the core components of the abscisic acid (ABA) signaling pathway, type 2C protein phosphatase TaPP2C and SNF1-related protein kinase TaSnRK2, interact with TaNHLP1 to regulate its abundance. Furthermore, TaNHLP1 interacts with the Receptor for Activated C Kinase 1 (TaRACK1A), an ABA pathway negative regulator, and influences its subcellular localization. Importantly, both the TaNHLP1 and TaRACK1A mutations promote ABA accumulation in the shoot bases and tiller buds. Notably, the NHLP1-RACK1 module is conserved across monocots and eudicots, and natural variations in the promoter of TaNHLP1-A enhance its transcriptional activity, leading to increased tiller number and yield. Collectively, these findings elucidate the genetic mechanism of NHLP1-mediated tillering regulation and highlight its potential as a target for improving crop plant architecture.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。