Metabolic reprogramming is a key feature of clear cell renal cell carcinoma (ccRCC), and metabolic abnormality can lead to significant changes in gene expression, resulting in the immunosuppressive microenvironment. In this study, we used a combination of single-cell RNA sequencing and bulk RNA sequencing to investigate the relationships between ccRCC metabolic reprogramming and immune exhaustion. Metabolic subtypes of ccRCC patients were constructed using bulk RNA sequencing. Tumor cells of different metabolic subtypes were analyzed and extracted by the Scissor algorithm, using single-cell RNA sequencing. The molecular mechanisms of abnormal metabolic regulating tumor immunity were explored using cell-cell communication analysis. In addition, the correlations between relevant molecules and immune exhaustion signals were verified in ccRCC by immunohistochemistry. The molecular mechanisms of metabolic abnormalities leading to immune exhaustion were validated via Western blotting, ELISA, cell co-culture and immunotherapy models. ccRCC patients can be divided into MT1 and MT2 metabolic subtypes. The MT2 subtype has a poorer prognosis and lower response to immunotherapy. Abnormal metabolism of arachidonic acid is a prominent feature of the MT2 subtype, and activates the MDK signaling pathway. As a secreted protein, MDK can further recruit immunosuppressive cells, such as Treg, Tex, and TAM. Blocking the arachidonic acid COX metabolic pathway significantly reduces the expression and secretion levels of MDK, thereby reprogramming the tumor microenvironment to promote anti-tumor immunity. Abnormal metabolism of arachidonic acid plays an important role in promoting immune exhaustion by activating the MDK signaling pathway. MDK may serve as an important biomarker for predicting the immune therapy response in ccRCC. By reducing MDK secretion, targeting blockade of arachidonic acid metabolism may be an effective treatment strategy to enhance the efficacy of immunotherapy in ccRCC.
Metabolic reprogramming of arachidonic acid in clear cell renal carcinoma promotes an immunosuppressive microenvironment by activating MDK signaling pathway.
透明细胞肾癌中花生四烯酸的代谢重编程通过激活 MDK 信号通路促进免疫抑制微环境的形成
阅读:6
作者:Yao Jiaxi, Xu Tong, Wang Chenyuan, Xie Junfeng, Jiang Qing
| 期刊: | Clinical and Experimental Medicine | 影响因子: | 3.500 |
| 时间: | 2025 | 起止号: | 2025 Aug 13; 25(1):291 |
| doi: | 10.1007/s10238-025-01807-8 | 研究方向: | 代谢、信号转导、细胞生物学 |
| 疾病类型: | 肾癌 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
