The integrated single-cell analysis interpret the lactate metabolism-driven immune suppression in triple-negative breast cancer.

整合的单细胞分析解释了乳酸代谢驱动的三阴性乳腺癌免疫抑制

阅读:6
作者:Gao Xinhai, Wang Tianhua, Liu Cun, Li Ye, Zhang Wenfeng, Zhang Minpu, Yao Yan, Gao Chundi, Liu Ruijuan, Sun Changgang
BACKGROUND: Individuals with triple-negative breast cancer (TNBC) exhibit elevated lactate levels, which offers a valuable lead for investigating the molecular mechanisms underlying the tumor microenvironment (TME) and identifying more efficacious treatments. METHODS: TNBC samples were classified based on lactate-associated genes. A single-cell transcriptomic approach was employed to examine functional differences across cells with varying lactate metabolism. Immunohistochemistry was used to explore the relationship between lactate metabolism and the CXCL12/CXCR4 signaling axis. In addition, utilizing machine learning techniques, we constructed a prognostic model based on lactic acid phenotype genes. RESULTS: Lactate-associated gene-based stratification revealed increased immune cell infiltration and immune checkpoint expression in Lactate Cluster 1. Elevated lactate metabolism scores were observed in both cancer-associated fibroblasts (CAFs) and malignant cells. CAFs with high lactate metabolism exhibited immune suppression through the CXCL12/CXCR4 axis. Immunohistochemistry confirmed elevated LDHA, LDHB, CXCL12, and CXCR4 levels in the high lactate group. CONCLUSION: This study elucidates the complex interplay between lactate and immune cells in TNBC and highlights the CXCL12/CXCR4 axis as a key pathway through which lactate mediates immune suppression, offering new insights into metabolic regulation within the TME. Furthermore, we developed a prognostic model based on lactate metabolism phenotype genes to predict the prognosis of TNBC patients and guide immunotherapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。