Glycolysis is a hallmark metabolic pathway in pancreatic cancer (PC). As the end product of glycolysis, lactic acid accumulates significantly in PC. Lactic acid serves as a primary substrate for histone lactylation, leading to an upregulation of histone lactylation levels, which likely contributes to progression of PC. This study reveals novel insights, highlighting that H3K18la levels are elevated in PC tissues and cells. Notably, the natural compound demethylzeylasteral (DML), derived from Tripterygium wilfordii Hook F (TwHF), substantially decreases lactic acid generation in PC cells, subsequently resulting in the downregulation of H3K18la levels and inhibiting the aggressive characteristics of PC cells. To further investigate the underlying mechanisms, we conducted RNA-seq analysis on DML-treated cells and ChIP-seq analyses for H3K18la. For the first time, mesoderm-related factor 1 (MESP1) was identified as a target protein modulated by both DML and H3K18la. DML was shown to repress the expression of MESP1, while sodium lactate (Nala) was found to partially restore its expression levels. Overexpression of MESP1 was linked to the promotion of epithelial-mesenchymal transition (EMT) and apoptosis in PC cells. Furthermore, RNA-seq analyses following MESP1 silencing indicated its significant association with critical physiological processes in PC cells, including the cell cycle, apoptosis, and cell adhesion. Importantly, MESP1 has also been connected to various cancer metabolism pathways, such as MAPK, PI3K-AKT, and carbon metabolism. This research is groundbreaking in demonstrating that DML impedes the malignant behavior of PC cells by downregulating H3K18la levels and diminishing the expression of the oncogene MESP1.
Demethylzeylasteral suppresses the expression of MESP1 by reducing H3K18la level to inhibit the malignant behaviors of pancreatic cancer.
去甲基泽拉甾醇通过降低 H3K18la 水平来抑制 MESP1 的表达,从而抑制胰腺癌的恶性行为
阅读:5
作者:Ma Xiaolei, Cheng Mengxing, Jia Yanxin, Zhang Kun, Zhang Haocheng, Feng Di, Xu Wenxiao, Qiao Guofen
| 期刊: | Cell Death Discovery | 影响因子: | 7.000 |
| 时间: | 2025 | 起止号: | 2025 Jul 3; 11(1):305 |
| doi: | 10.1038/s41420-025-02603-9 | 研究方向: | 肿瘤 |
| 疾病类型: | 胰腺癌 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
