Integrative metabolome and genome-wide transcriptome analyses reveal the regulatory network for bioactive compound biosynthesis in lettuce upon UV-A radiation.

整合代谢组学和全基因组转录组学分析揭示了UV-A辐射下生菜中生物活性化合物生物合成的调控网络

阅读:16
作者:Zha Lingyan, Wei Shiwei, Yang Xiao, Niu Qingliang, Huang Danfeng, Zhang Jingjin
Ultraviolet A (UV-A) radiation possesses great potential for enhancing the bioactive properties of vegetables and also has promising application prospects in controlled-environment agriculture. Lettuce is a widely cultivated model vegetable in controlled-environment agriculture with abundant health-beneficial bioactive compounds. However, the comprehensive regulatory effectiveness and mechanism of UV-A on bioactive compounds in lettuce remain largely unclear. To address this issue, we performed transcriptomic and metabolomic analyses of UV-A-treated lettuce to construct a global map of metabolic features and transcriptional regulatory networks for all major bioactive compounds. Our study revealed that UV-A promotes the accumulation of most phenylpropanoids and vitamins (provitamin A and vitamin E/K(1)/B(6)) but represses the biosynthesis of sesquiterpenoids. MYB transcription factors (TFs) are key activators of bioactive compound biosynthesis promoted by UV-A, whereas WRKY TFs primarily inhibit the production of sesquiterpenoids. Moreover, light signaling plays a crucial and direct regulatory function in stimulating the biosynthesis of phenylpropanoids and vitamins but not in that of sesquiterpenoids. In comparison, hormone signaling dominates a more decisive regulatory role in repressing sesquiterpenoid biosynthesis through working directly and interacting with WRKY TFs. This study paves the way toward an understanding of the bioactive compound regulation and genetic improvement of lettuce bioactivity value.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。